CenterPoint-KITTI:环境配置、模型训练、效果展示;KITTI 3D 目标检测数据集下载

目录

前言

Python虚拟环境创建以及使用

KITTI3D目标检测数据集

CenterPoint-KITTI编译遇到问题合集

ImportError: cannot import name 'VoxelGenerator' from 'spconv.utils

失败案例

最终解决方案

对于可选参数,road plane的处理

E: Unable to locate package libboost-all-dev

TypeError: load() missing 1 required positional argument: ‘Loader‘

 GPU内存不足如何解决:

训练效果

2024-09-13更新


前言

        最近在做基于雷达的目标检测跟踪实现,阅读了同济大学最新的论文LIMOT,但论文复线时需要自己训练Detector,下面记录自己在编译CenterPoint-KITTI过程中遇到的问题以及解决方法。

LIMOT论文官方Github仓库:

GitHub - tiev-tongji/LIMOT: A Tightly-Coupled System for LiDAR-Inertial Odometry and Multi-Object Tracking.

CenterPoint-KITTI官方Github仓库:

​​​​​​GitHub - tianweiy/CenterPoint-KITTI

Python虚拟环境创建以及使用

        官方编译运行CenterPoint时并没有使用Python的虚拟环境,但自己考虑之后处于虚拟环境的便捷性,还是选择使用虚拟环境实现。

  • Python中虚拟环境的使用:
  • 创建虚拟环境ptython3 -m virtualenv venv
  • 激活虚拟环境source venv/bin/activate
  • 退出虚拟环境deactivate
  • Linux中如何彻底删除虚拟环境以及虚拟环境中安装的软件,记住一个原则,虚拟环境里面安装的软件全部存在于此虚拟环境中,当执行命令rm -rf venv删除对应的虚拟环境后,安装的软件也就被删除了。

        最终自己创建并使用虚拟环境如下:

KITTI3D目标检测数据集

  • KITTI原始3D对象预测数据集:

CenterPoint-KITTI编译遇到问题合集​​​​​​​

ImportError: cannot import name 'VoxelGenerator' from 'spconv.utils

失败案例

         搜索上述错误,有很多种其他参考参考,但修改代码后,又报了很多错误,如下:最终也是卸载,并安装对应版本解决。

第一次参考这篇博客,修改对应代码,大错特错,随后错误一个接着一个,直接干沉默了。

SSD 复现过程报错_importerror: cannot import name ‘voxelgenerator’ f-优快云博客

ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 2 dimensions. The detected shape was (1, 4) + inhomogeneous part. · Issue #1109 · theislab/scvelo

​​​​​​​​​​​​​​成功解决ValueError: setting an array element with a sequence. The requested array has an...-优快云博客

最终解决方案

如何解决,最终卸载了cuda11.8对应的spconv,将其替换为Git官网上对应的v1.1版本完美解决。

        自己搜索过程中查询到另一篇Github博客所讲,将低版本在这里也就是v1.1版本的VoxelGeneratorV2的相关文件复制一份放到你安装的spconv文件中,这种方式我并没有尝试,使用重新安装v1.1的方式。 

        1. 查看并卸载已经安装的spconv:

#通过pip list命令查看安装的spconv以及cumm
pip list | grep spconv
pip list | grep cumm
#查询到对应的spconv以及cumm版本后使用uninstall命令卸载(这种方式仅针对于使用pip方式安装的)
pip uninstall spconv
pip uninstall cumm
#卸载后再次查看已经没有安装的spconv以及cumm

        根据官方网站查看:对于cuda11.8如果使用下述方式安装是会有cumm的,自己第一次安装了cuda11.8对应的spconv,下面安装了v1.1版本就没有cumm了,所有安装后验证是否安装正确,没有出现cumm也不用慌,可以正常使用。

        2. 从sponv官网拉取对应v1.1版本的spconv:

git clone -b v1.1 https://github.com/traveller59/spconv.git --recurisve

-b v1.1:指定了拉取对应v1.1版本的spconv。

--recursive: 这个选项用于克隆所有子模块(submodule)。Git 子模块是指在 Git 仓库中嵌套的另一个 Git 仓库。使用 --recursive 选项可以确保在克隆主仓库的同时,也会递归地克隆所有子模块。

        安装步骤:(参考官网)

  • if you are using pytorch 1.4+ and encounter "nvcc fatal: unknown -Wall", you need to go to torch package dir and remove flags contains "-Wall" in INTERFACE_COMPILE_OPTIONS in Caffe2Targets.cmake. This problem can't be fixed in this project (to avoid this, I need to remove all torch dependency in cuda sources and drop half support).
  1. Use git clone xxx.git --recursive to clone this repo.

  2. Install boost headers to your system include path, you can use either sudo apt-get install libboost-all-dev or download compressed files from boost official website and copy headers to include path.

  3. Download cmake >= 3.13.2, then add cmake executables to PATH.

  4. Ensure you have installed pytorch 1.0+ in your environment, run python setup.py bdist_wheel (don't use python setup.py install).

  5. Run cd ./dist, use pip to install generated whl file.

        第5步执行完成后,在dist目录下会生成一个文件(参考如下),执行下述命令安装spconv v1.1:

pip install spconv-1.1-cp38-cp38-linux_x86_64.whl

GitHub - traveller59/spconv at v1.1

        3. 验证是否安装成功:

        由于我使用的时python的虚拟环境,最终安装的软件都位于venv这个虚拟环境中,按照下图第一个方框里的内容找到对应的路径查看有VoxelGeneratorV2这个类,表示成功。

对于可选参数,road plane的处理

进入对应的数据配置文件和模型配置文件,将USE_ROAD_PLANE: 由True改为False。

E: Unable to locate package libboost-all-dev

对于无法定位到软件包的问题,直接使用sudo apt-get update先更新下载源,之后再重试即可。

sudo apt-get update
sudo apt-get install libboost-all-dev

E: Unable to locate package libboost-all-dev_unable to locate package libboost-dev-优快云博客

TypeError: load() missing 1 required positional argument: ‘Loader‘

解决方案:TypeError: load() missing 1 required positional argument: ‘Loader‘_typeerror: adb() missing 1 required positional arg-优快云博客

  • 将yaml.load()改为 yaml.safe_load()即可解决。

 GPU内存不足如何解决:

        直接搜索相应博客,我的解决方案就是将batch_size大小指定为2,也就是批量大小指定为2就可以,对于KITTI的CenterPoint的训练。

​​​​​​​​​​​​​​​​​​​​​pytorch: 四种方法解决RuntimeError: CUDA out of memory. Tried to allocate ... MiB_cuda out of memory. tried to allocate 1.38 gib (gp-优快云博客

  • 如何实时查看GPU使用情况,使用命令:watch -n 0.5 nvidia-smi。
    • watch 是一个在 Unix 和类 Unix 操作系统中常用的命令行工具,它可以用来周期性地执行一个程序,并全屏显示其输出。这对于实时监控某些操作或系统状态非常有用。
    • watch:这是用来执行周期性命令的工具。
    • -n 0.5:这个选项告诉 watch 每 0.5 秒执行一次后面的命令。-n 后面的数字是间隔时间,单位是秒。

训练效果

=========================================================================

2024-09-13更新

         昨天经过漫长时间的训练,模型已经训练成功,但是模型评估的时候出了点小问题:可以参考下面第二个图片,主要是编译的时候修改了numpa好像(具体忘记记录了),但这个问题不大,直接卸载原有的numpy,安装报错指定的numpy就可以。

pip unstall numpy
pip install numpy==1.22.0

        安装新版本的numpy后可以对训练出的.pth结尾的模型进行验证。 

        训练后模型的存放位置:在CenterPouint-KITTI根目录下的output文件夹中,具体参考下图。

        根据官网GETTING_STARTED.md提示测试训练的模型:

        修改了numpy版本后测试没问题了,这里就不贴图片了。

        训练完成之后最重要的也就是按照DEMO.md的提示进行可视化验证:

         按照官网提示安装mayavi的同时需要安装pyqt5工具:

pip install pyqt5

        否则会报如下错误:

        上述工作完成后,执行如下命令:

#官网提示
python demo.py --cfg_file cfgs/kitti_models/pv_rcnn.yaml \
    --ckpt pv_rcnn_8369.pth \
    --data_path ${POINT_CLOUD_DATA}

#example for me
python3 demo.py --cfg_file cfgs/kitti_models/centerpoint.yaml --ckpt ../output/kitti_models/centerpoint/default/ckpt/checkpoint_epoch_51.pth --data_path ~/Lab/object_detector/CenterPoint-KITTI/data/kitti/testing/velodyne

        之后通过可视化界面可以看到如下预测:        

        和官网模型基本一致,非常nice,后续继续探索一下和LIMOT的集成。

### 如何使用Kitti数据集进行模型训练 #### 准备工作环境 为了确保能够顺利地利用 KITTI 数据集进行模型训练,需安装并设置好所需软件包和库。对于基于 MMdetection3D 的项目来说,这通常意味着要按照官方文档中的指导完成依赖项的安装以及框架本身的部署[^1]。 #### 获取与处理数据集 访问 KITTI 官方网站下载所需的 LiDAR 和图像标注等资料。之后依据所选用的具体算法需求对原始数据做适当预处理,比如转换成适合输入给定网络结构的形式。如果采用的是 YOLOv5,则应参照特定指南调整数据格式以便于后续操作;而对于 CenterPoint 或其他点云检测方法而言,则可能涉及更复杂的坐标变换或是特征提取过程[^2][^3]。 #### 配置实验参数 针对选定的任务场景修改默认配置文件(如 `centerpoint_pillar02_kitti_3d.py`),设定诸如学习率、批次大小之类的超参,并指定路径指向本地存储的数据位置。此步骤至关重要,因为它直接影响到最终得到的结果质量及其泛化能力[^3]。 #### 开始训练过程 启动训练脚本之前建议先验证一切准备工作无误——确认所有必要的资源均已加载完毕且没有任何错误提示。一旦准备好就可以执行命令来触发实际的学习循环,在这个阶段可能会花费较长时间视乎硬件条件而异。期间可以通过 TensorBoard 等工具监控进度变化情况以及时发现潜在问题所在[^4]。 #### 测试与评估性能 当一轮完整的迭代完成后应当立即着手检验新获得的知识表示效果如何。通过调用相应接口获取预测框并与真实标签对比计算各项指标得分从而判断当前版本的好坏程度。此外还可以借助可视化手段辅助理解输出结果之间的关系进而找出改进方向。 ```bash # 启动训练的例子 (假设已经设置了正确的Python环境) python tools/train.py configs/your_config_file.py --work-dir ./output/ ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值