pytorch: 四种方法解决RuntimeError: CUDA out of memory. Tried to allocate ... MiB

CUDA OutOfMemory问题解决策略
本文详细介绍了如何解决运行时CUDA内存溢出错误,包括调整batch_size、定期清理内存、使用no_grad()和修改pin_memory设置。通过实例和原理解析,帮助开发者避免CUDA内存不足问题。

Bug:RuntimeError: CUDA out of memory. Tried to allocate … MiB

解决方法:

法一:

调小batch_size,设到4基本上能解决问题,如果还不行,该方法pass。

法二:

在报错处、代码关键节点(一个epoch跑完…)插入以下代码(目的是定时清内存):

import torch, gc

gc.collect()
torch.cuda.empty_cache()

法三(常用方法):

在测试阶段和验证阶段前插入代码 with torch.no_grad()(目的是该段程序不计算参数梯度),如下:

def t
这个错误是由于CUDA内存不足导致的。根据引用\[1\]和引用\[2\]的信息,你的GPU总容量为4.00 GiB10.76 GiB,但已经分配了2.34 GiB1.82 GiB的内存,剩余的内存不足以分配14.00 MiB的内存。这可能是由于你的模型或数据的规模过大,导致内存不足。你可以尝试减小batch size或者使用更小的模型来减少内存的使用。另外,你还可以尝试设置max_split_size_mb参数来避免内存碎片化。关于内存管理和PYTORCH_CUDA_ALLOC_CONF的更多信息,请参考PyTorch的文档。 此外,根据引用\[3\]的信息,你还可以通过手动杀死占用GPU内存的进程来释放内存。你可以使用kill命令加上进程的PID来终止该进程,例如kill -9 31272。 综上所述,你可以通过减小batch size、使用更小的模型、设置max_split_size_mb参数或手动杀死占用内存的进程来解决CUDA内存不足的问题。 #### 引用[.reference_title] - *1* [已解决yolov5报错RuntimeError: CUDA out of memory. Tried to allocate 14.00 MiB](https://blog.csdn.net/Code_and516/article/details/129798540)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [解决RuntimeError: CUDA out of memory. Tried to allocate 14.00 MiB](https://blog.csdn.net/qq_43733107/article/details/126876755)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 70
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值