调频:双频调制的推导

设双频信号为
f ( t ) = A m 1 cos ⁡ ω m 1 t + A m 2 cos ⁡ ω m 2 t f(t)=A_{m1}\cos\omega_{m1}t+A_{m2}\cos\omega_{m2}t f(t)=Am1cosωm1t+Am2cosωm2t
由调频信号的一般表达式可得:
S F M ( t ) = A cos ⁡ [ ω c t + K F M A m 1 ω m 1 sin ⁡ ω m 1 t + K F M A m 2 ω m 2 sin ⁡ ω m 2 t ] = A cos ⁡ [ ω c t + β F M 1 sin ⁡ ω m 1 t + β F M 2 sin ⁡ ω m 2 t ] \begin{aligned} S_{FM}(t)&=A\cos\left[\omega_ct+\frac{K_{FM}A_{m1}}{\omega_{m1}}\sin\omega_{m1}t+\frac{K_{FM}A_{m2}}{\omega_{m2}}\sin\omega_{m2}t\right]\\ &=A\cos\left[\omega_ct+\beta_{FM1}\sin\omega_{m1}t+\beta_{FM2}\sin\omega_{m2}t\right] \end{aligned} SFM(t)=Acos[ωct+ωm1KFMAm1sinωm1t+ωm2KFMAm2sinωm2t]=Acos[ωct+βFM1sinωm1t+βFM2sinωm2t]
其中调频指数
β F M 1 = K F M A m 1 ω m 1 β F M 2 = K F M A m 2 ω m 2 \beta_{FM1}=\frac{K_{FM}A_{m1}}{\omega_{m1}}\\ \beta_{FM2}=\frac{K_{FM}A_{m2}}{\omega_{m2}} βFM1=ωm1KFMAm1βFM2=ωm2KFMAm2
引入相量:
S ˙ F M ( t ) = A exp ⁡ j [ ω c t + β 1 sin ⁡ ω 1 t + β 2 sin ⁡ ω 2 t ] = A exp ⁡ ( j ω c t ) ⋅ exp ⁡ ( β 1 sin ⁡ ω 1 t ) ⋅ exp ⁡ ( β 2 sin ⁡ ω 2 t ) \begin{aligned} \dot{S}_{FM}(t)&=A\exp j\left[\omega_ct+\beta_{1}\sin\omega_{1}t+\beta_{2}\sin\omega_{2}t\right]\\ &=A\exp(j\omega_ct)\cdot\exp(\beta_1\sin\omega_1t)\cdot\exp(\beta_2\sin\omega_2t) \end{aligned} S˙FM(t)=Aexpj[ωct+β1sinω1t+β2sinω2t]=Aexp(jωct)exp(β1sinω1t)exp(β2sinω2t)
对第二项展开,可由第一类Bessel函数表示
exp ⁡ ( β 1 sin ⁡ ω 1 t ) = cos ⁡ ( β 1 sin ⁡ ω 1 t ) + j sin ⁡ ( β 1 sin ⁡ ω 1 t ) = ∑ n = − ∞ ∞ J 2 n ( β 1 ) cos ⁡ 2 n ω 1 t + j ⋅ ∑ n = − ∞ ∞ J 2 n − 1 ( β 1 ) sin ⁡ ( 2 n − 1 ) ω 1 t \begin{aligned} \exp(\beta_1\sin\omega_1t)&=\cos(\beta_1\sin\omega_1t)+j\sin(\beta_1\sin\omega_1t)\\ &=\sum_{n=-\infty}^\infty J_{2n}(\beta_1)\cos2n\omega_1t+j\cdot\sum_{n=-\infty}^\infty J_{2n-1}(\beta_1)\sin(2n-1)\omega_1t \end{aligned} exp(β1sinω1t)=cos(β1sinω1t)+jsin(β1sinω1t)=n=J2n(β1)cos2nω1t+jn=J2n1(β1)sin(2n1)ω1t

结合Bessel函数性质:
J − n ( x ) = ( − 1 ) n J n ( x ) J_{-n}(x)=(-1)^nJ_n(x) Jn(x)=(1)nJn(x)
和三角函数奇偶性,得:
J − ( 2 n − 1 ) ( β 1 ) cos ⁡ ( 2 n − 1 ) ω 1 t = − J 2 n − 1 ( β 1 ) cos ⁡ ( 2 n − 1 ) ω 1 t J − 2 n ( β 1 ) sin ⁡ ( − 2 n ω 1 t ) = − J 2 n ( β 1 ) sin ⁡ ( 2 n ω 1 t ) J_{-(2n-1)}(\beta_1)\cos (2n-1)\omega_1 t=-J_{2n-1}(\beta_1)\cos(2n-1)\omega_1t\\ J_{-2n}(\beta_1)\sin(-2n\omega_1t)=-J_{2n}(\beta_1)\sin(2n\omega_1t) J(2n1)(β1)cos(2n1)ω1t=J2n1(β1)cos(2n1)ω1tJ2n(β1)sin(2nω1t)=J2n(β1)sin(2nω1t)
在原式基础上添加一些和为0的项,化为:
exp ⁡ ( β 1 sin ⁡ ω 1 t ) = ∑ n = − ∞ ∞ J 2 n ( β 1 ) cos ⁡ 2 n ω 1 t + ∑ n = − ∞ ∞ J 2 n − 1 ( β 1 ) cos ⁡ ( 2 n − 1 ) ω 1 t ⏞ 这 一 项 正 负 相 消 为 0 + j ⋅ ∑ n = − ∞ ∞ J 2 n ( β 1 ) sin ⁡ 2 n ω 1 t ⏟ 这 一 项 正 负 抵 消 为 0 + j ⋅ ∑ n = − ∞ ∞ J 2 n − 1 ( β 1 ) sin ⁡ ( 2 n − 1 ) ω 1 t = ∑ n = − ∞ ∞ J n ( β 1 ) cos ⁡ n ω 1 t + j ⋅ ∑ n = − ∞ ∞ J n ( β 1 ) sin ⁡ ω 1 t = ∑ n = − ∞ ∞ J n ( β 1 ) exp ⁡ ω 1 t \begin{aligned} \exp(\beta_1\sin\omega_1t)=&\sum_{n=-\infty}^\infty J_{2n}(\beta_1)\cos2n\omega_1t+\overbrace{\sum_{n=-\infty}^\infty J_{2n-1}(\beta_1)\cos(2n-1)\omega_1t}^{这一项正负相消为0}+\\ &\underbrace{j\cdot\sum_{n=-\infty}^\infty J_{2n}(\beta_1)\sin2n\omega_1t}_{这一项正负抵消为0}+j\cdot\sum_{n=-\infty}^\infty J_{2n-1}(\beta_1)\sin(2n-1)\omega_1t\\ =&\sum_{n=-\infty}^\infty J_n(\beta_1)\cos n\omega_1t+j\cdot\sum_{n=-\infty}^\infty J_n(\beta_1)\sin\omega_1t\\ =&\sum_{n=-\infty}^\infty J_n(\beta_1)\exp\omega_1t \end{aligned} exp(β1sinω1t)===n=J2n(β1)cos2nω1t+n=J2n1(β1)cos(2n1)ω1t 0+0 jn=J2n(β1)sin2nω1t+jn=J2n1(β1)sin(2n1)ω1tn=Jn(β1)cosnω1t+jn=Jn(β1)sinω1tn=Jn(β1)expω1t

S ˙ F M ( t ) = A e j ω c t [ ∑ n = − ∞ ∞ J n ( β 1 ) e j n ω 1 t ] [ ∑ k = − ∞ ∞ J k ( β 2 ) e j k ω 2 t ] = A ∑ n = − ∞ ∞ ∑ k = − ∞ ∞ J n ( β 1 ) J k ( β 2 ) exp ⁡ j ( ω c + n ω m 1 + k ω m 2 ) t \begin{aligned} \dot{S}_{FM}(t)=&Ae^{j\omega_ct}\left[\sum_{n=-\infty}^\infty J_n(\beta_1)e^{jn\omega_1t}\right]\left[\sum_{k=-\infty}^\infty J_k(\beta_2)e^{jk\omega_2t}\right]\\ &=A\sum_{n=-\infty}^\infty\sum_{k=-\infty}^\infty J_n(\beta_1)J_k(\beta_2)\exp j(\omega_c+n\omega_{m1}+k\omega_{m2})t \end{aligned} S˙FM(t)=Aejωct[n=Jn(β1)ejnω1t][k=Jk(β2)ejkω2t]=An=k=Jn(β1)Jk(β2)expj(ωc+nωm1+kωm2)t

相量还原得到:
S F M ( t ) = A ∑ n = − ∞ ∞ ∑ k = − ∞ ∞ J n ( β F M 1 ) J k ( β F M 2 ) cos ⁡ ( ω c + n ω m 1 + k ω m 2 ) t S_{FM}(t)=A\sum_{n=-\infty}^\infty\sum_{k=-\infty}^\infty J_n(\beta_{FM1})J_k(\beta_{FM2})\cos(\omega_c+n\omega_{m1}+k\omega_{m2})t SFM(t)=An=k=Jn(βFM1)Jk(βFM2)cos(ωc+nωm1+kωm2)t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值