第六章.卷积神经网络(CNN)—卷积层(Convolution)&池化层(Pooling)

本文介绍了卷积神经网络(CNN)的基础,包括卷积层如何保持数据形状,卷积运算的细节,如填充和步幅对输出大小的影响,以及im2col函数在简化卷积运算中的作用。同时,文章还讨论了池化层的功能,如最大池化和平均池化,以及它们在处理图像数据时的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第六章.卷积神经网络(CNN)

6.1 卷积层(Convolution)&池化层(Pooling)

1.整体结构

以5层神经网络的实现为例:

1).基于全连接层(Affine)的网络

全连接层:相邻层的所有神经元之间都有连接
在这里插入图片描述

2).常见的CNN的网络

在这里插入图片描述

3).全连接层存在的问题

数据的形状容易被“忽视”了,比如输入的数据是图像时,图像通常是高,长,通道方向上的3维形状,但是,全连接层输入时,需要将3维数据拉平为1维数据,所以无法利用与形状相关的信息。

2.卷积层

卷积层可以保持形状不变,当输入数据是图像时,卷积层会以3维数据的形式接受输入数据,并同样以3维数据的形式输出至下一层,因此在CNN中可以正确理解图像等具有形状的数据。

1).卷积运算

  • 一维数据的卷积计算

    示例:填充为0,步幅为1的卷积运算在这里插入图片描述

  • 三维数据的卷积计算

    示例:填充为0,步幅为1的卷积运算
    在这里插入图片描述
    计算方式
    通道方向有多特征图时,会按通道进行输入数据和滤波器的卷积运算,并结果相加,从而得到输出。

    注意
    ①.在三维数据的卷积运算中,输入数据和滤波器的通道数必须设置为相同的值。(在本例中同时设置为3)

  • 结合方块来思考卷积计算
    在这里插入图片描述
    图像描述:
    每个通道只有一个偏置,这里偏置的形状为(FN,1,1),滤波器的输出结果形状为(FN,OH,OW),这两个方块相加,要对滤波器的输出结果按通道加上相同的偏置。

  • 卷积计算的批处理
    在这里插入图片描述
    注意
    ①.网络间传递的是四维数据,对这N个数据进行了卷积运算,也就是说,批处理将N次的处理汇总成1次进行。

2).填充&步幅

  • 填充

    ①.定义
    在进行卷积层处理之前,有时需要向输入数据的周围填入固定的数据(比如填充值0等),这称为填充。
    在这里插入图片描述

    ②.目的
    主要是为了调整输出的大小,因为每次在进行卷积运算时都会缩小空间,那么在某个时刻输出大小就有可能变为1,导致无法在进行卷积运算,为了避免出现这种情况,就要使用填充

  • 步幅

    ①.定义
    应用滤波器的位置间隔称为步幅。(之前的应用都是步幅为1,下面的应用步幅为2)
    在这里插入图片描述

3).计算输出核的大小

假设输入大小为(H,W),滤波大小为(FH,FW),输出大小为(OH,OW),填充为P,步幅为S,输出大小为:
在这里插入图片描述
注意
①.所设定的值必须使式(H+2P-FH)/S(W+2P-FW)/S分别可以整除,当输入大小无法整除时,需要采取报错等对策。有的深度学习框架,当值无法除尽时,有时会向最接近的整数四舍五入,不进行报错而继续进行。

4).实现扩展

①.CNN处理4维数据时,卷积运算的实现看上去会很复杂,可以使用im2col(图像转化成矩阵)这个技巧,问题会变得很简单。

②.im2col函数会将输入数据展开以适合滤波器(权重)。具体来说,对于输入数据,将应用滤波器的区域(3维方块)横向展开为一列。

在这里插入图片描述
③.卷积运算的滤波器处理细节:使用im2col函数展开输入数据后,将卷积层的滤波器纵向展开为一列,计算两个矩阵的乘积,最后转化(reshape)为输出数据大小。
在这里插入图片描述

5).卷积层的实现

import numpy as np


# 从图像到矩阵
def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_data.shape
    out_h = (H + 2 * pad - filter_h) // stride + 1
    out_w = (W + 2 * pad - filter_w) // stride + 1

    img = np.pad(input_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')
    col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

    for y in range(filter_h):
        y_max = y + stride * out_h
        for x in range(filter_w):
            x_max = x + stride * out_w
            col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]

    col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1)

    return col


# 从矩阵到图像
def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_shape
    out_h = (H + 2 * pad - filter_h) // stride + 1
    out_w = (W + 2 * pad - filter_w) // stride + 1
    col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)

    img = np.zeros((N, C, H + 2 * pad + stride - 1, W + 2 * pad + stride - 1))
    for y in range(filter_h):
        y_max = y + stride * out_h
        for x in range(filter_w):
            x_max = x + stride * out_w
            img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]

    return img[:, :, pad:H + pad, pad:W + pad]


class Convolution:
    def __init__(self, W, b, stride=1, pad=0):
        self.W = W
        self.b = b
        self.stride = stride
        self.pad = pad

        # 中间数据(backward时使用)
        self.x = None
        self.col = None
        self.col_W = None

        # 权重和偏置参数的梯度
        self.dW = None
        self.db = None

    # 正向传播
    def forward(self, x):
        FN, C, FH, FW = self.W.shape
        N, C, H, W = x.shape
        out_h = int((H + 2 * self.pad - FH) / self.stride) + 1
        out_w = int((W + 2 * self.pad - FW) / self.stride) + 1

        col = im2col(x, FH, FW, self.stride, self.pad)
        col_W = self.W.reshape(FN, -1).T

        out = np.dot(col, col_W) + self.b
        out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)

        self.x = x
        self.col = col
        self.col_W = col_W

        return out

    # 反向传播
    def backward(self, dout):
        FN, C, FH, FW = self.W.shape
        dout = dout.transpose(0, 2, 3, 1).reshape(-1, FN)

        self.db = np.sum(dout, axis=0)
        self.dW = np.dot(self.col.T, dout)
        self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)

        dcol = np.dot(dout, self.col_W.T)
        dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)

        return dx

3.池化层

池化是缩小高,长方向上的空间运算。

1).池化的处理方法

示例:填充为0,步幅为2的池化

  • Max池化(本书中所说的池化层是Max池化)
    方式:从目标区域中取最大值
    在这里插入图片描述

  • Average池化
    方式:从目标区域中取均值在这里插入图片描述

2).池化层的特征

  • 没有要学习的参数
    池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中选出最大值(或均值)。

  • 通道数不发生改变
    经过池化运算,输入数据和输出数据的通道数不发生变化,计算是按通道独立进行的。
    在这里插入图片描述

  • 对微小的位置变化具有鲁棒性(健壮)
    输入数据发生微小偏差时,池化仍会返回相同的结果。

    示例:输入数据在高方向上只偏离一个像素时:
    在这里插入图片描述

3).池化层的实现步骤

①.展开输入数据
②.求各行的最大值
③.转换为合适的输出大小

在这里插入图片描述

4).池化层的实现

import numpy as np


# 从图像到矩阵
def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_data.shape
    out_h = (H + 2 * pad - filter_h) // stride + 1
    out_w = (W + 2 * pad - filter_w) // stride + 1

    img = np.pad(input_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')
    col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

    for y in range(filter_h):
        y_max = y + stride * out_h
        for x in range(filter_w):
            x_max = x + stride * out_w
            col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]

    col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1)

    return col


# 从矩阵到图像
def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_shape
    out_h = (H + 2 * pad - filter_h) // stride + 1
    out_w = (W + 2 * pad - filter_w) // stride + 1
    col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)

    img = np.zeros((N, C, H + 2 * pad + stride - 1, W + 2 * pad + stride - 1))
    for y in range(filter_h):
        y_max = y + stride * out_h
        for x in range(filter_w):
            x_max = x + stride * out_w
            img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]

    return img[:, :, pad:H + pad, pad:W + pad]


class Pooling:
    def __init__(self, pool_h, pool_w, stride=1, pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad

        self.x = None
        self.arg_max = None

    # 正向传播
    def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)

        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h * self.pool_w)

        arg_max = np.argmax(col, axis=1)
        out = np.max(col, axis=1)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)

        self.x = x
        self.arg_max = arg_max

        return out

    # 反向传播
    def backward(self, dout):
        dout = dout.transpose(0, 2, 3, 1)

        pool_size = self.pool_h * self.pool_w
        dmax = np.zeros((dout.size, pool_size))
        dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()
        dmax = dmax.reshape(dout.shape + (pool_size,))

        dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
        dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)

        return dx

### 卷积神经网络池化层概述 卷积神经网络Convolutional Neural Network, CNN)中的池化层,也称为下采样层,主要用于减少数据量并保留重要特征[^2]。通过降低空间维度,池化层有助于减轻计算负担,并增强模型对输入变化的鲁棒性。 ### 池化层的工作原理 池化层通常位于卷积层之后,接收来自前一层的特征图作为输入。常见的池化方法有最大池化(Max Pooling)、平均池化(Average Pooling)等。这些方法通过对局部区域内的像素值执行特定运算来生成较小尺寸的新特征图。 #### 最大池化示例 对于一个 \( n \times n \) 的窗口,在每次滑动过程中选取该区域内最大的数值作为输出矩阵对应位置上的元素: ```python import numpy as np def max_pool(input_matrix, pool_size=2): output_shape = (input_matrix.shape[0] // pool_size, input_matrix.shape[1] // pool_size) result = np.zeros(output_shape) for i in range(0, input_matrix.shape[0], pool_size): for j in range(0, input_matrix.shape[1], pool_size): window = input_matrix[i:i+pool_size, j:j+pool_size] result[i//pool_size][j//pool_size] = np.max(window) return result ``` ### 关于池化层结构图的信息 虽然具体的视觉表示未在此处提供,但可以描述典型的池化层结构如下:假设有一个大小为 \( W \times H \times D \) 的三维张量作为输入,其中宽度\(W\)、高度\(H\) 通道数\(D\)。经过池化处理后,会得到一个新的形状接近原尺寸一半的三维张量,即 \( \frac{W}{k} \times \frac{H}{k} \times D \),这里\( k \)代表池化的步幅或核大小。 为了更直观理解这一过程,建议查阅相关书籍或者在线资源获取详细的图表说明。此外,许多机器学习框架文档也会附带清晰易懂的操作流程图解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值