前言
这阶段我们开始Faster RCNN源码的学习,首先我们附上源码地址https://github.com/endernewton/tf-faster-rcnn,众所周知,Faster RCNN的核心思想就是anchors,一种类似穷举法的做法,现在我们先简单介绍一下anchors的组成。
anchors
形状:矩形
坐标形式:左上坐标,右下坐标
数量9*N(N为尺寸规范化后的像素点数),9是因为一共有9个尺寸。也就是说为每个像素点都配备9个anchors。
generate_anchors()
# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick and Sean Bell
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
# Verify that we compute the same anchors as Shaoqing's matlab implementation:
#
# >> load output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/anchors.mat
# >> anchors
#
# anchors =
#
# -83 -39 100 56
# -175 -87 192 104
# -359 -183 376 200
# -55 -55 72 72
# -119 -119 136 136
# -247 -247 264 264
# -35 -79 52 96
# -79 -167 96 184
# -167 -343 184 360
# array([[ -83., -39., 100., 56.],
# [-175., -87., 192., 104.],
# [-359., -183., 376., 200.],
# [ -55., -55., 72., 72.],
# [-119., -119., 136., 136.],
# [-247., -247., 264., 264.],
# [ -35., -79., 52., 96.],
# [ -79., -167., 96., 184.],
# [-167., -343., 184., 360.]])
def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
scales=2 ** np.arange(3, 6)):
"""
Generate anchor (reference) windows by enumerating aspect ratios X
scales wrt a reference (0, 0, 15, 15) window.
"""
base_anchor = np.array([1, 1, base_size, base_size]) - 1
ratio_anchors = _ratio_enum(base_anchor, ratios)
anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales)
for i in range(ratio_anchors.shape[0])])
return anchors
def _whctrs(anchor):
"""
Return width, height, x center, and y center for an anchor (window).
"""
w = anchor[2] - anchor[0] + 1
h = anchor[3] - anchor[1] + 1
x_ctr = anchor[0] + 0.5 * (w - 1)
y_ctr = anchor[1] + 0.5 * (h - 1)
return w, h, x_ctr, y_ctr
def _mkanchors(ws, hs, x_ctr, y_ctr):
"""
Given a vector of widths (ws) and heights (hs) around a center
(x_ctr, y_ctr), output a set of anchors (windows).
"""
ws = ws[:, np.newaxis]
hs = hs[:, np.newaxis]
anchors = np.hstack((x_ctr - 0.5 * (ws - 1),
y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1),
y_ctr + 0.5 * (hs - 1)))
return anchors
def _ratio_enum(anchor, ratios):
"""
Enumerate a set of anchors for each aspect ratio wrt an anchor.
"""
w, h, x_ctr, y_ctr = _whctrs(anchor)
size = w * h
size_ratios = size / ratios
ws = np.round(np.sqrt(size_ratios))
hs = np.round(ws * ratios)
anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
def _scale_enum(anchor, scales):
"""
Enumerate a set of anchors for each scale wrt an anchor.
"""
w, h, x_ctr, y_ctr = _whctrs(anchor)
ws = w * scales
hs = h * scales
anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
if __name__ == '__main__':
import time
t = time.time()
a = generate_anchors()
print(time.time() - t)
print(a)
from IPython import embed;
embed()
这里就不必详细解释了,因为作用很简单,就是生成9个anchors,生成以后形式这样的:
anchors =
-83 -39 100 56
-175 -87 192 104
-359 -183 376 200
-55 -55 72 72
-119 -119 136 136
-247 -247 264 264
-35 -79 52 96
-79 -167 96 184
-167 -343 184 360
现在看生成所有anchors的代码,这里有看两个。
generate_anchors_pre()
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)):
""" A wrapper function to generate anchors given different scales
Also return the number of anchors in variable 'length'
"""
anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
A = anchors.shape[0]
shift_x = np.arange(0, width) * feat_stride
shift_y = np.arange(0, height) * feat_stride
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose()
K = shifts.shape[0]
# width changes faster, so here it is H, W, C
anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False)
length = np.int32(anchors.shape[0])
return anchors, length
anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
根据所给的比例和尺寸生成9个anchors,注意这里的尺寸是特征提取后的比例。
然后获得anchors的数量存为A,也就是让A=9,然后得到原图的宽高,np.meshgrid(x,y)的作用是制造一个x*y维的矩阵,np.vstack作用是在竖直方向上堆叠,相当于构建两个坐标的矩阵。然后所谓的K就是像素点的数量。
anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False)
这两句是把两种尺度叠加起来,最后reshape一下就完成了所有anchors的构造。
最后返回一下尺度。
generate_anchors_pre_tf()
def generate_anchors_pre_tf(height, width, feat_stride=16, anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2)):
shift_x = tf.range(width) * feat_stride # width
shift_y = tf.range(height) * feat_stride # height
shift_x, shift_y = tf.meshgrid(shift_x, shift_y)
sx = tf.reshape(shift_x, shape=(-1,))
sy = tf.reshape(shift_y, shape=(-1,))
shifts = tf.transpose(tf.stack([sx, sy, sx, sy]))
K = tf.multiply(width, height)
shifts = tf.transpose(tf.reshape(shifts, shape=[1, K, 4]), perm=(1, 0, 2))
anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
A = anchors.shape[0]
anchor_constant = tf.constant(anchors.reshape((1, A, 4)), dtype=tf.int32)
length = K * A
anchors_tf = tf.reshape(tf.add(anchor_constant, shifts), shape=(length, 4))
return tf.cast(anchors_tf, dtype=tf.float32), length
底下的代码总的来说和上面一样这不过流程有点不同,首先恢复原图尺寸,然后构建新的尺寸矩阵。tf.transpose这里要说一下,他完成的是矩阵的转置,然后同样做一下叠加,将生成的shifts的通道调换一下,生成基础9个anchors,最后以同样的叠加方法创造出所有的anchors。
最后
这里就是所有anchors的生成,这里比较简单,就不做过多解释,如有错误望请指出,在这里对各位前辈致以诚挚敬意。