- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/kV8ZsJv6cPNzJLEuhPfvXg) 中的学习记录博客**
- **🍖 原作者:[K同学啊](https://mtyjkh.blog.youkuaiyun.com/)**
本周任务:
- 根据Tensorflow代码,编写对应的pytorch代码
- 了解ResNetV2与ResNetV的区别
一:前期准备
1.设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore") #忽略警告信息
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
2.导入数据集
data_dir = "/content/drive/MyDrive/bird_photos"
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[-1] for path in data_paths]
classeNames
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
# transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
test_transform = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder("/content/drive/MyDrive/bird_photos",transform=train_transforms)
total_data
total_data.class_to_idx
二:数据预处理
1.划分数据
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
batch_size = 4
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
三:搭建Resnet-50V2模型
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
def __init__(self, in_channels, filters, kernel_size=3, stride=1, conv_shortcut=False):
super(ConvBlock, self).__init__()
self.conv_shortcut = conv_shortcut
self.stride = stride
out_channels = 4 * filters
self.preact_bn = nn.BatchNorm2d(in_channels)
self.preact_relu = nn.ReLU(inplace=True)
if conv_shortcut:
self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride)
elif stride > 1:
self.shortcut = nn.MaxPool2d(kernel_size=1, stride=stride)
else:
self.shortcut = nn.Identity()
self.conv1 = nn.Conv2d(in_channels, filters, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(filters)
self.conv2 = nn.Conv2d(filters, filters, kernel_size=kernel_size, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(filters)
self.conv3 = nn.Conv2d(filters, out_channels, kernel_size=1)
def forward(self, x):
shortcut = self.shortcut(self.preact_relu(self.preact_bn(x)))
x = self.conv1(self.preact_relu(self.preact_bn(x)))
x = self.bn1(x)
x = F.relu(x, inplace=True)
x = self.conv2(x)
x = self.bn2(x)
x = F.relu(x, inplace=True)
x = self.conv3(x)
return F.relu(x + shortcut, inplace=True)
class ResNetBlock(nn.Module):
def __init__(self, in_channels, filters, blocks, stride1=2):
super(ResNetBlock, self).__init__()
self.blocks = nn.ModuleList()
self.blocks.append(ConvBlock(in_channels, filters, conv_shortcut=True, stride=stride1))
for _ in range(1, blocks - 1):
self.blocks.append(ConvBlock(4 * filters, filters))
self.blocks.append(ConvBlock(4 * filters, filters, stride=1))
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class ResNet50V2(nn.Module):
def __init__(self, num_classes=1000, include_top=True, input_channels=3):
super(ResNet50V2, self).__init__()
self.include_top = include_top
self.conv1 = nn.Conv2d(input_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2 = ResNetBlock(64, 64, 3, stride1=1)
self.conv3 = ResNetBlock(256, 128, 4)
self.conv4 = ResNetBlock(512, 256, 6)
self.conv5 = ResNetBlock(1024, 512, 3, stride1=1)
self.post_bn = nn.BatchNorm2d(2048)
self.post_relu = nn.ReLU(inplace=True)
if include_top:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.post_relu(self.post_bn(x))
if self.include_top:
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
model = ResNet50V2().to(device)
model
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
四:训练模型
1.编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
2.训练器的选择和训练
import copy
optimizer = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0 # 设置一个最佳准确率,作为最佳模型的判别指标
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
# 保存最佳模型到 best_model
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
best_model = copy.deepcopy(model)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
# 保存最佳模型到文件中
PATH = './best_model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
print('Done')
3.结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
七:总结
相较于之前的Resnet-50v2,我们发现模型的准确率略有提高