深度学习12 — ResNet50V2 算法实战与解析

🍨 本文为[🔗365天深度学习训练营] 中的学习记录博客

🍖 原作者:[K同学啊]

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch 
import torch.nn as nn
import pathlib, warnings
from torchvision import transforms, datasets

warnings.filterwarnings("ignore")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 2.导入数据

import os,PIL,random,pathlib
data_dir = '../J1/bird_photos'

data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))

classeNames = [str(path).split("/")[-1] for path in data_paths]

print(classeNames)

print(total_data.class_to_idx)

 

3. 划分数据集 

train_size = int(0.8 * len(total_data))

test_size = len(total_data) - train_size

train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

batch_size = 32 
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)

test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=0)

 二、搭建模型

1.搭建模型

import torch
import torch.nn as nn
import torch.nn.functional as F

class Block2(nn.Module):
    def __init__(self, in_channel, filters, kernel_size=3, stride=1, conv_shortcut=False):
        super(Block2, self).__init__()
        
        self.preact = nn.Sequential(
            nn.BatchNorm2d(in_channel),
            nn.ReLU(inplace=True)
        )
        
        self.conv_shortcut = conv_shortcut
        if self.conv_shortcut:
            self.short = nn.Conv2d(in_channel, 4 * filters, 1, stride=stride, padding=0, bias=False)
        elif stride > 1:
            self.short = nn.MaxPool2d(kernel_size=1, stride=stride, padding=0)
        else:
            self.short = nn.Identity()
        
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, filters, 1, stride=stride, bias=False),
            nn.BatchNorm2d(filters),
            nn.ReLU(inplace=True)
        )
        
        self.conv2 = nn.Sequential(
            nn.Conv2d(filters, filters, kernel_size, stride=1, padding=1, bias=False), # 添加填充以保持尺寸
            nn.BatchNorm2d(filters),
            nn.ReLU(inplace=True)
        )
        
        self.conv3 = nn.Conv2d(filters, 4 * filters, 1, bias=False)

    def forward(self, x):
        x_short = self.short(self.preact(x)) if self.conv_shortcut else self.short(x)
        x = self.conv1(self.preact(x))
        x = self.conv2(x)
        x = self.conv3(x)
        x = x + x_short
        return x

        
class Stack2(nn.Module):
    def __init__(self, in_channel, filters, blocks, stride=2):
        super(Stack2, self).__init__()
        self.conv = nn.Sequential()

        self.conv.add_module('block0', Block2(in_channel, filters, conv_shortcut=True, stride=stride))
        
        for i in range(1, blocks - 1):
            self.conv.add_module('block' + str(i), Block2(4 * filters, filters))
        
        self.conv.add_module('block' + str(blocks - 1), Block2(4 * filters, filters))

    def forward(self, x):
        x = self.conv(x)
        return x


class ResNet50V2(nn.Module):
    def __init__(self, include_top=True, preact=True, use_bias=True, input_shape=[224, 224, 3], classes=1000, pooling=None):
        super(ResNet50V2, self).__init__()
        
        self.conv1 = nn.Sequential()

        self.conv1.add_module('conv', nn.Conv2d(3, 64, 7, stride=2, padding=3, bias=use_bias, padding_mode='zeros'))

        if not preact:
            self.conv1.add_module('bn', nn.BatchNorm2d(64))
            self.conv1.add_module('relu', nn.ReLU())
        self.conv1.add_module('max_pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

        self.conv2 = Stack2(64, 64, 3)
        self.conv3 = Stack2(256, 128, 4)
        self.conv4 = Stack2(51
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值