OpenCV实战:答题卡自动识别与打分系统,轻松搞定考试评分!

af42e491-e97e-4625-a7c2-f3c9212287f2

在现代教育中,自动化评分系统正变得越来越重要。本文将带您使用OpenCV实现一个答题卡自动识别与打分系统。从图像预处理到答案区域检测,再到最终得分计算,我们将一步步讲解整个流程,并附上完整的代码示例。无论您是初学者还是有一定经验的开发者,都能从中受益!


题卡识别的应用场景,例如标准化考试、在线测评等。如何通过图像识别技术提取答题卡中的答案信息?需要解决的关键问题:图像倾斜校正、答案区域定位、选项识别等。使用OpenCV进行图像处理。可结合简单的机器学习算法(如KNN)进行分类。


2.操作步骤

  • 灰度化:将彩色图像转换为灰度图像。

  • 高斯模糊:去除噪声。

  • 边缘检测:使用Canny算法检测答题卡的轮廓。

  • 透视变换:校正答题卡的倾斜角度。

  • 代码示例

import cv2
import numpy as np

# 读取图像并灰度化
image = cv2.imread('answer_sheet.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 高斯模糊
blurred = cv2.GaussianBlur(gray, (5, 5), 0)

# 边缘检测
edged = cv2.Canny(blurred, 75, 200)

# 查找轮廓并排序
contours, _ = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:5]

# 获取答题卡的四个顶点
for contour in contours:
    peri = cv2.arcLength(contour, True)
    approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
    if len(approx) == 4:
        doc_contour = approx
        break

# 透视变换
def four_point_transform(image, pts):
    rect = order_points(pts)
    (tl, tr, br, bl) = rect
    widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
    widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
    maxWidth = max(int(widthA), int(widthB))
    heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
    heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
    maxHeight = max(int(heightA), int(heightB))
    dst = np.array([
        [0, 0],
        [maxWidth - 1, 0],
        [maxWidth - 1, maxHeight - 1],
        [0, maxHeight - 1]], dtype="float32")
    M = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
    return warped
warped = four_point_transform(image, doc_contour.reshape(4, 2))
  • 使用形态学操作(如膨胀和腐蚀)突出答案区域。

  • 使用轮廓检测提取每个答案框的位置。

  • 代码示例

# 形态学操作
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
morph = cv2.morphologyEx(warped, cv2.MORPH_CLOSE, kernel)
# 轮廓检测
contours, _ = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
    x, y, w, h = cv2.boundingRect(contour)
    if w > 20 and h > 20:  # 过滤掉过小的区域
        cv2.rectangle(warped, (x, y), (x + w, y + h), (0, 255, 0), 2)
  • 将答案框分割为单个选项。

  • 计算每个选项区域的像素值,判断是否被涂黑。

  • 与标准答案进行比对,计算得分。

  • 代码示例

# 假设标准答案为 [1, 2, 3, 4]
correct_answers = [1, 2, 3, 4]
user_answers = []

for i, box in enumerate(answer_boxes):
    roi = warped[box[1]:box[1]+box[3], box[0]:box[0]+box[2]]
    mean_val = cv2.mean(roi)[0]
    if mean_val < 100:  # 如果平均像素值较低,则认为被涂黑
        user_answers.append(i % 4 + 1)

# 计算得分
score = sum([1 for u, c in zip(user_answers, correct_answers) if u == c])
print(f"得分:{score}/{len(correct_answers)}")

3.完整代码

import numpy as np
import cv2

# 定义正确答案字典
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}


def order_points(pts):
    """
    对四个顶点进行排序,顺序为:左上、右上、右下、左下。
    :param pts: 输入的四个顶点坐标
    :return: 排序后的四个顶点坐标
    """
    rect = np.zeros((4, 2), dtype="float32")
    s = pts.sum(axis=1)
    rect[0] = pts[np.argmin(s)]  # 左上角
    rect[2] = pts[np.argmax(s)]  # 右下角

    diff = np.diff(pts, axis=1)
    rect[1] = pts[np.argmin(diff)]  # 右上角
    rect[3] = pts[np.argmax(diff)]  # 左下角

    return rect


def four_point_transform(image, pts):
    """
    对图像进行透视变换,将其转换为正视图。
    :param image: 输入图像
    :param pts: 四个顶点坐标
    :return: 透视变换后的图像
    """
    rect = order_points(pts)
    (tl, tr, br, bl) = rect

    # 计算新图像的宽度和高度
    width_a = np.linalg.norm(br - bl)
    width_b = np.linalg.norm(tr - tl)
    max_width = max(int(width_a), int(width_b))

    height_a = np.linalg.norm(tr - br)
    height_b = np.linalg.norm(tl - bl)
    max_height = max(int(height_a), int(height_b))

    # 定义目标四边形的坐标
    dst = np.array([
        [0, 0],
        [max_width - 1, 0],
        [max_width - 1, max_height - 1],
        [0, max_height - 1]], dtype="float32")

    # 计算透视变换矩阵并应用变换
    transform_matrix = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, transform_matrix, (max_width, max_height))

    return warped


def sort_contours(cnts, method="left-to-right"):
    """
    对轮廓进行排序。
    :param cnts: 轮廓列表
    :param method: 排序方法(left-to-right, right-to-left, top-to-bottom, bottom-to-top)
    :return: 排序后的轮廓和对应的边界框
    """
    reverse = False
    i = 0
    if method in ("right-to-left", "bottom-to-top"):
        reverse = True
    if method in ("top-to-bottom", "bottom-to-top"):
        i = 1

    bounding_boxes = [cv2.boundingRect(c) for c in cnts]
    (cnts, bounding_boxes) = zip(*sorted(zip(cnts, bounding_boxes),
                                         key=lambda b: b[1][i], reverse=reverse))
    return cnts, bounding_boxes


def cv_show(name, img):
    """
    显示图像。
    :param name: 窗口名称
    :param img: 要显示的图像
    """
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


def main(image_path):
    """
    主函数,处理图像并计算分数。
    :param image_path: 输入图像路径
    """
    # 读取图像并转换为灰度图
    image = cv2.imread(image_path)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(blurred, 75, 200)

    # 显示中间结果
    cv_show('Blurred', blurred)
    cv_show('Edged', edged)

    # 查找轮廓
    cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    contours_img = image.copy()
    cv2.drawContours(contours_img, cnts, -1, (0, 0, 255), 3)
    cv_show('Contours', contours_img)

    # 找到试卷区域的轮廓
    doc_cnt = None
    if len(cnts) > 0:
        cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
        for c in cnts:
            peri = cv2.arcLength(c, True)
            approx = cv2.approxPolyDP(c, 0.02 * peri, True)
            if len(approx) == 4:
                doc_cnt = approx
                break

    # 执行透视变换
    warped = four_point_transform(gray, doc_cnt.reshape(4, 2))
    cv_show('Warped', warped)

    # 二值化处理
    thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    cv_show('Thresh', thresh)

    # 查找所有圆圈轮廓
    thresh_contours = thresh.copy()
    cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cv2.drawContours(thresh_contours, cnts, -1, (0, 0, 255), 3)
    cv_show('Thresh Contours', thresh_contours)

    # 过滤出符合要求的圆形轮廓
    question_cnts = []
    for c in cnts:
        (x, y, w, h) = cv2.boundingRect(c)
        ar = w / float(h)
        if w >= 20 and h >= 20 and 0.9 <= ar <= 1.1:
            question_cnts.append(c)

    # 对轮廓按从上到下排序
    question_cnts = sort_contours(question_cnts, method="top-to-bottom")[0]

    # 计算分数
    correct = 0
    for (q, i) in enumerate(np.arange(0, len(question_cnts), 5)):
        cnts = sort_contours(question_cnts[i:i + 5])[0]
        bubbled = None

        # 查找被填涂的答案
        for (j, c) in enumerate(cnts):
            mask = np.zeros(thresh.shape, dtype="uint8")
            cv2.drawContours(mask, [c], -1, 255, -1)
            mask = cv2.bitwise_and(thresh, thresh, mask=mask)
            total = cv2.countNonZero(mask)

            if bubbled is None or total > bubbled[0]:
                bubbled = (total, j)

        # 判断答案是否正确
        color = (0, 0, 255)
        k = ANSWER_KEY[q]
        if k == bubbled[1]:
            color = (0, 255, 0)
            correct += 1

        cv2.drawContours(warped, [cnts[k]], -1, color, 3)

    # 计算并显示分数
    score = (correct / 5.0) * 100
    print(f"[INFO] Score: {score:.2f}%")
    cv2.putText(warped, f"{score:.2f}%", (10, 30),
                cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)

    # 显示最终结果
    cv2.imshow("Original", image)
    cv2.imshow("Exam", warped)
    cv2.waitKey(0)


if __name__ == '__main__':
    # 运行主函数
    main("images/test_01.png")
# 运行结果 [INFO] Score: 80.00%

完整的项目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平时不搬砖

创造不易,请动动你发财的小手

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值