\qquad
DC电平估计为例,估计值
A
^
\hat{A}
A^为数据样本
x
[
N
]
x[N]
x[N]均值,则LSE变为:
A
^
[
N
]
=
1
N
+
1
∑
n
=
0
N
x
[
n
]
\hat{A}[N] = \frac{1}{N+1}\sum_{n = 0}^{N}x[n]
A^[N]=N+11n=0∑Nx[n]
\qquad
在加权LS问题中,当加权矩阵为
W
\bold{W}
W(通常为噪声矩阵)是对角矩阵时,其中
[
W
]
i
i
=
1
/
σ
i
2
[\bold{W}]_{ii}=1/\sigma_{i}^{2}
[W]ii=1/σi2,加权LSE表达式为:
A
^
[
N
]
=
∑
n
=
0
N
x
[
n
]
σ
n
2
∑
n
=
0
N
1
σ
n
2
\hat{A}[N]=\frac{\sum_{n=0}^{N}\frac{x[n]}{\sigma_{n}^{2}}}{\sum_{n=0}^{N}\frac{1}{\sigma_{n}^{2}}}
A^[N]=∑n=0Nσn21∑n=0Nσn2x[n]
\qquad
分解为序贯形式为:
A
^
[
N
]
=
∑
n
=
0
N
−
1
x
[
n
]
σ
n
2
+
x
[
N
]
σ
N
2
∑
n
=
0
N
1
σ
n
2
=
∑
n
=
0
N
−
1
1
σ
n
2
A
^
[
N
−
1
]
+
x
[
N
]
σ
N
2
∑
n
=
0
N
1
σ
n
2
=
A
^
[
N
−
1
]
+
1
σ
N
2
∑
n
=
0
N
1
σ
n
2
∗
(
x
[
N
]
−
A
^
[
N
−
1
]
)
\hat{A}[N] = \frac{\sum_{n=0}^{N-1}\frac{x[n]}{\sigma_{n}^{2}}+\frac{x[N]}{\sigma_{N}^{2}}}{\sum_{n=0}^{N}\frac{1}{\sigma_{n}^{2}}}= \frac{{\sum_{n=0}^{N-1}\frac{1}{\sigma_{n}^{2}}}\hat{A}[N-1] + \frac{x[N]}{\sigma_{N}^{2}}}{\sum_{n=0}^{N}\frac{1}{\sigma_{n}^{2}}} \\ =\hat{A}[N-1] + \frac{\frac{1}{\sigma_{N}^{2}}}{\sum_{n=0}^{N}\frac{1}{\sigma_{n}^{2}}} * (x[N] - \hat{A}[N-1])
A^[N]=∑n=0Nσn21∑n=0N−1σn2x[n]+σN2x[N]=∑n=0Nσn21∑n=0N−1σn21A^[N−1]+σN2x[N]=A^[N−1]+∑n=0Nσn21σN21∗(x[N]−A^[N−1])
\qquad
其中,LSE即为最优线性无偏估计(BLUE),因此:
v
a
r
(
A
^
[
N
−
1
]
)
=
1
∑
n
=
0
N
−
1
1
σ
n
2
var(\hat{A}[N-1]) = \frac{1}{\sum_{n=0}^{N-1}\frac{1}{\sigma_{n}^{2}}}
var(A^[N−1])=∑n=0N−1σn211
\qquad
由此,增益
K
[
N
]
K[N]
K[N]可以表示为:
K
[
N
]
=
v
a
r
(
A
^
[
N
−
1
]
)
v
a
r
(
A
^
[
N
−
1
]
)
+
σ
N
2
K[N]=\frac{var(\hat A[N-1])}{var(\hat A[N-1]) + \sigma_{N}^{2}}
K[N]=var(A^[N−1])+σN2var(A^[N−1])
\qquad
由于增益
K
[
N
]
K[N]
K[N]取决于
v
a
r
(
A
^
[
N
−
1
]
)
var(\hat A[N-1])
var(A^[N−1]),则可以表示为:
v
a
r
(
A
^
[
N
]
)
=
1
∑
n
=
0
N
1
σ
n
2
=
1
1
v
a
r
(
A
^
[
N
−
1
]
)
+
1
σ
N
2
=
v
a
r
(
A
^
[
N
−
1
]
)
σ
N
2
v
a
r
(
A
^
[
N
−
1
]
)
+
σ
N
2
=
(
1
−
v
a
r
(
A
^
[
N
−
1
]
)
v
a
r
(
A
^
[
N
−
1
]
)
+
σ
N
2
)
v
a
r
(
A
^
[
N
−
1
]
)
=
(
1
−
K
[
N
]
)
v
a
r
(
A
^
[
N
−
1
]
)
var(\hat A[N]) = \frac{1}{\sum_{n=0}^{N}\frac{1}{\sigma_{n}^{2}}}=\frac{1}{\frac{1}{var(\hat A[N-1])} + \frac{1}{\sigma_{N}^{2}}}=\frac{var(\hat A[N-1])\sigma_{N}^{2}}{var(\hat A[N-1]) + \sigma_{N}^{2}} \\ =(1-\frac{var(\hat A[N-1])}{var(\hat A[N-1]) + \sigma_{N}^{2}})var(\hat A[N-1])=(1-K[N])var(\hat A[N-1])
var(A^[N])=∑n=0Nσn211=var(A^[N−1])1+σN211=var(A^[N−1])+σN2var(A^[N−1])σN2=(1−var(A^[N−1])+σN2var(A^[N−1]))var(A^[N−1])=(1−K[N])var(A^[N−1])
\qquad
由此,
A
^
[
N
]
,
K
[
N
]
,
v
a
r
(
A
^
[
N
]
)
\hat A[N],K[N],var(\hat A[N])
A^[N],K[N],var(A^[N])可以递推获得。
估计量更新为:
A
^
[
N
]
=
A
^
[
N
−
1
]
+
K
[
N
]
(
x
[
N
]
−
A
^
[
N
−
1
]
)
\hat A[N] = \hat A[N-1] + K[N](x[N] - \hat A[N-1])
A^[N]=A^[N−1]+K[N](x[N]−A^[N−1])
方差更新为:
v
a
r
(
A
^
[
N
]
)
=
(
1
−
K
[
N
]
)
v
a
r
(
A
^
[
N
−
1
]
)
var(\hat A[N]) = (1-K[N])var(\hat A[N-1])
var(A^[N])=(1−K[N])var(A^[N−1])
\qquad
具有矢量参数的序贯LSE,使用
C
C
C表示零均值噪声的矩阵,即:
J
=
(
x
−
H
θ
)
T
C
−
1
(
x
−
H
θ
)
\bold J = (\bold x-\bold H\bold\theta)^{T}\bold C^{-1}(\bold x-\bold H\bold\theta)
J=(x−Hθ)TC−1(x−Hθ)其中,包含与BLUE相同的条件即
θ
^
\hat\theta
θ^无偏且线性。则最优的估计值为:
θ
^
=
(
H
T
C
−
1
H
)
H
−
1
C
−
1
x
C
θ
^
=
(
H
T
C
−
1
H
)
−
1
\hat\bold\theta=(\bold H^{T}\bold C^{-1}H)\bold H^{-1}\bold C^{-1}\bold x \\ \bold C_{\hat\theta}=(\bold H^{T}\bold C^{-1}\bold H)^{-1}
θ^=(HTC−1H)H−1C−1xCθ^=(HTC−1H)−1其中,
C
\bold C
C是对焦矩阵,即噪声不相关,因此
θ
^
\hat\bold\theta
θ^可按照时间顺序获得,令:
C
[
n
]
=
d
i
a
g
{
σ
1
2
,
σ
2
2
,
.
.
.
,
σ
n
2
}
H
[
n
]
=
[
H
[
n
−
1
]
h
T
[
n
]
]
=
[
n
×
p
1
×
p
]
x
[
n
]
=
[
x
[
1
]
,
x
[
2
]
,
.
.
.
,
x
[
n
]
]
T
\bold C[n] = diag\{\sigma_{1}^{2},\sigma_{2}^{2},...,\sigma_{n}^{2}\} \\ \bold H[n]=\begin{bmatrix} \bold H[n-1] \\ \bold h^{T}[n] \end{bmatrix}=\begin{bmatrix} n \times p \\ 1 \times p \end{bmatrix} \\ \bold x[n] = [x[1],x[2],...,x[n]]^{T}
C[n]=diag{σ12,σ22,...,σn2}H[n]=[H[n−1]hT[n]]=[n×p1×p]x[n]=[x[1],x[2],...,x[n]]T
\qquad
使用
θ
^
[
n
]
\hat\theta[n]
θ^[n]表示基于
x
[
n
]
\bold x[n]
x[n]或者基于前
n
+
1
n+1
n+1个数据样本的加权LSE,估计量为:
θ
^
[
n
]
=
(
H
T
[
n
]
C
−
1
[
n
]
H
[
n
]
)
−
1
H
[
n
]
T
C
−
1
[
n
]
x
[
n
]
\hat\bold\theta[n]=(\bold H^{T}[n]\bold C^{-1}[n]\bold H[n])^{-1}\bold H[n]^{T}\bold C^{-1}[n]\bold x[n]
θ^[n]=(HT[n]C−1[n]H[n])−1H[n]TC−1[n]x[n]
\qquad
协方差矩阵
∑
[
n
]
\bold{\sum}[n]
∑[n]为:
C
θ
^
[
n
]
=
∑
[
n
]
=
(
H
T
[
n
]
C
−
1
[
n
]
H
[
n
]
)
−
1
\bold C_{\hat\theta[n]} = \bold{\sum}[n] = (\bold H^{T}[n]\bold C^{-1}[n]\bold H[n])^{-1}
Cθ^[n]=∑[n]=(HT[n]C−1[n]H[n])−1
θ
^
[
n
]
=
(
[
H
T
[
n
−
1
]
,
h
[
n
]
]
[
C
[
n
−
1
]
0
0
σ
n
2
]
−
1
[
H
[
n
−
1
]
h
T
[
n
]
]
)
−
1
(
[
H
T
[
n
−
1
]
,
h
[
n
]
]
[
C
[
n
−
1
]
0
0
σ
n
2
]
−
1
[
x
[
n
−
1
]
x
[
n
]
]
)
=
(
H
T
[
n
−
1
]
C
−
1
[
n
−
1
]
H
[
n
−
1
]
+
1
σ
n
2
h
[
n
]
h
T
[
n
]
)
−
1
(
H
T
[
n
−
1
]
C
−
1
[
n
−
1
]
x
[
n
−
1
]
+
1
σ
n
2
h
[
n
]
x
[
n
]
)
\hat\bold \theta[n]=([\bold H^{T}[n-1],\bold h[n]] \begin{bmatrix} \bold C[n-1] & 0 \\ 0 & \sigma^{2}_{n} \end{bmatrix}^{-1} \begin{bmatrix} \bold H[n-1] \\ \bold h^{T}[n] \end{bmatrix})^{-1} \\ ([\bold H^{T}[n-1],\bold h[n]] \begin{bmatrix} \bold C[n-1] & 0 \\ 0 & \sigma^{2}_{n} \end{bmatrix}^{-1} \begin{bmatrix} \bold x[n-1] \\ x[n] \end{bmatrix}) \\ =(\bold H^{T}[n-1]\bold C^{-1}[n-1]\bold H[n-1] + \frac{1}{\sigma^{2}_{n}}\bold h[n]\bold h^{T}[n])^{-1} \\ (\bold H^{T}[n-1]\bold C^{-1}[n-1]\bold x[n-1] + \frac{1}{\sigma^{2}_{n}}\bold h[n]\bold x[n])
θ^[n]=([HT[n−1],h[n]][C[n−1]00σn2]−1[H[n−1]hT[n]])−1([HT[n−1],h[n]][C[n−1]00σn2]−1[x[n−1]x[n]])=(HT[n−1]C−1[n−1]H[n−1]+σn21h[n]hT[n])−1(HT[n−1]C−1[n−1]x[n−1]+σn21h[n]x[n])令
∑
[
n
−
1
]
=
(
H
T
[
n
−
1
]
C
−
1
[
n
−
1
]
H
[
n
−
1
]
)
−
1
\sum[n-1] = (\bold H^{T}[n-1]\bold C^{-1}[n-1]\bold H[n-1])^{-1}
∑[n−1]=(HT[n−1]C−1[n−1]H[n−1])−1
则
θ
^
[
n
]
=
(
∑
−
1
[
n
−
1
]
+
1
σ
n
2
h
[
n
]
h
T
[
n
]
)
−
1
(
H
T
[
n
−
1
]
C
−
1
[
n
−
1
]
x
[
n
−
1
]
+
1
σ
n
2
h
[
n
]
x
[
n
]
)
\hat\theta[n] = (\bold{\sum}^{-1}[n-1] + \frac{1}{\sigma^{2}_{n}}\bold h[n]\bold h^{T}[n])^{-1} \\ (\bold H^{T}[n-1]\bold C^{-1}[n-1]\bold x[n-1] + \frac{1}{\sigma^{2}_{n}}\bold h[n]\bold x[n])
θ^[n]=(∑−1[n−1]+σn21h[n]hT[n])−1(HT[n−1]C−1[n−1]x[n−1]+σn21h[n]x[n])因为
∑
[
n
]
=
(
∑
−
1
[
n
−
1
]
+
1
σ
n
2
h
[
n
]
h
T
[
n
]
)
−
1
\bold{\sum}[n] = (\bold{\sum}^{-1}[n-1] + \frac{1}{\sigma^{2}_{n}}\bold h[n]\bold h^{T}[n])^{-1}
∑[n]=(∑−1[n−1]+σn21h[n]hT[n])−1由Woodbury恒等式
(
A
+
u
u
T
)
−
1
=
A
−
1
−
A
−
1
u
u
T
A
−
1
1
+
u
T
A
−
1
u
(A + uu^{T})^{-1} = A^{-1} - \frac{A^{-1}uu^{T}A^{-1}}{1+u^{T}A^{-1}u}
(A+uuT)−1=A−1−1+uTA−1uA−1uuTA−1得:
∑
[
n
]
=
∑
[
n
−
1
]
−
∑
[
n
−
1
]
h
[
n
]
h
[
n
]
T
∑
[
n
−
1
]
σ
n
2
+
h
[
n
]
T
∑
[
n
−
1
]
h
[
n
]
=
(
I
−
K
[
n
]
h
T
[
n
]
)
∑
[
n
−
1
]
\bold{\sum}[n] = \bold{\sum}[n-1] - \frac{\bold{\sum}[n-1]\bold h[n]\bold h[n]^{T}\bold{\sum}[n-1]}{\sigma^{2}_{n}+\bold h[n]^{T}\bold{\sum}[n-1]\bold h[n]} \\ =(\bold I-\bold K[n]\bold h^{T}[n])\sum[n-1]
∑[n]=∑[n−1]−σn2+h[n]T∑[n−1]h[n]∑[n−1]h[n]h[n]T∑[n−1]=(I−K[n]hT[n])∑[n−1]其中,
K
[
n
]
=
∑
[
n
−
1
]
h
[
n
]
σ
n
2
+
h
[
n
]
T
∑
[
n
−
1
]
h
[
n
]
\bold K[n] = \frac{\bold{\sum}[n-1]\bold h[n]}{\sigma^{2}_{n}+\bold h[n]^{T}\bold{\sum}[n-1]\bold h[n]}
K[n]=σn2+h[n]T∑[n−1]h[n]∑[n−1]h[n]所以
θ
^
[
n
]
=
(
(
I
−
K
[
n
]
h
T
[
n
]
)
∑
[
n
−
1
]
)
(
H
T
[
n
−
1
]
C
−
1
[
n
−
1
]
x
[
n
−
1
]
+
1
σ
n
2
h
[
n
]
x
[
n
]
)
\hat\theta[n] = ((\bold I-\bold K[n]\bold h^{T}[n])\sum[n-1]) \\(\bold H^{T}[n-1]\bold C^{-1}[n-1]\bold x[n-1] + \frac{1}{\sigma^{2}_{n}}\bold h[n]\bold x[n])
θ^[n]=((I−K[n]hT[n])∑[n−1])(HT[n−1]C−1[n−1]x[n−1]+σn21h[n]x[n])且
θ
^
[
n
−
1
]
=
∑
[
n
−
1
]
H
T
[
n
−
1
]
C
−
1
[
n
−
1
]
x
[
n
−
1
]
\hat\bold\theta[n-1] = \sum[n-1]\bold H^{T}[n-1]\bold C^{-1}[n-1]\bold x[n-1]
θ^[n−1]=∑[n−1]HT[n−1]C−1[n−1]x[n−1]化简的:
θ
^
[
n
]
=
θ
^
[
n
−
1
]
+
K
[
n
]
(
x
[
n
]
−
h
T
[
n
]
θ
^
[
n
−
1
]
)
\hat\bold\theta[n] = \hat\bold\theta[n-1] + \bold K[n](x[n] - \bold h^{T}[n]\hat\bold \theta[n-1])
θ^[n]=θ^[n−1]+K[n](x[n]−hT[n]θ^[n−1])以上得到方差更新方程和状态更新方程。
2.序贯最小二乘估计(仅包含滤波)
最新推荐文章于 2025-04-22 14:12:43 发布