You are given a permutation p1,p2,…,pN consisting of 1,2,..,N. You can perform the following operation any number of times (possibly zero):
Operation: Swap two adjacent elements in the permutation.
You want to have pi≠i for all 1≤i≤N. Find the minimum required number of operations to achieve this.
把数组从头到尾过一遍再从尾到头过一遍就好啦,不过很容易忘记最后一个数呢23333(用C也能做呢)
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int main(int argc, char *argv[])
{
int n,i,f,g=1,sum=0;
int a[100000];
int b[100000];
memset(b,0,sizeof(b));
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
for(i=0;i<n-1;i++)
{
if(a[i]==i+1)
{
int t;
t=a[i];
a[i]=a[i+1];
a[i+1]=t;
b[i]++;
}
}
if(a[n-1]==n)
{
int t;
t=a[n-2];
a[n-2]=a[n-1];
a[n-1]=t;
b[n-1]++;
}
for(i=n-2;i>=0;i--)
{
if(a[i]==i+1)
{
int t;
t=a[i];
a[i]=a[i+1];
a[i+1]=t;
b[i]--;
}
}
for(i=0;i<n;i++)
{
if(b[i]<0)b[i]=-b[i];
sum=sum+b[i];
}
printf("%d\n",sum);
return 0;
}