问题 J: Derangement
时间限制: 1 Sec 内存限制: 128 MB
提交: 416 解决: 213
[提交] [状态] [讨论版] [命题人:admin]
题目描述
You are given a permutation p1,p2,…,pN consisting of 1,2,..,N. You can perform the following operation any number of times (possibly zero):
Operation: Swap two adjacent elements in the permutation.
You want to have pi≠i for all 1≤i≤N. Find the minimum required number of operations to achieve this.
Constraints
2≤N≤105
p1,p2,..,pN is a permutation of 1,2,..,N.
输入
The input is given from Standard Input in the following format:
N
p1 p2 .. pN
输出
Print the minimum required number of operations
样例输入
5
1 4 3 5 2
样例输出
2
提示
Swap 1 and 4, then swap 1 and 3. p is now 4,3,1,5,2 and satisfies the condition. This is the minimum possible number, so the answer is 2.
大体思路:交换分为两种情况:一种是相邻的两个都需要交换,另外一种是相邻两个中只需要交换一个。注意在最后位置上的一个元素需要特殊考虑!
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
int n; cin>>n;
int a[100005],p[100005];
memset(p,1,sizeof(p));
for(int i=1;i<=n;i++)
{
cin>>a[i];
if(a[i]==i)
p[i]=0;
}
int cnt=0;
for(int i=1;i<=n;i++)
{
if(i!=n)
{
if(p[i]==0&&p[i+1]==0)
{
cnt++;
p[i]=1;
p[i+1]=1;
}
else if(p[i]==0&&p[i+1]!=0)
{
cnt++;
p[i]=1;
}
}
else
{
if(p[i]==0)
{
cnt++;
p[i]=1;
}
}
}
cout<<cnt<<endl;
return 0;
}