deepseek本地部署+java、python调用

1.下载Ollama

https://ollama.com/

2.拉取模型

输入命令

ollama pull deepseek-v3

在这里插入图片描述

在这里插入图片描述

由于v3太大,改为r1,命令为:

ollama run deepseek-r1:1.5b

查看安装的模型

ollama ls

查看启动的模型

ollama ps

在这里插入图片描述
对话框输入/bye退出

在这里插入图片描述

3.Java调用

目前仅支持jdk17以上版本使用,本文使用的是jdk21,springboot版本为3.3.6
版本过高、过低时都无法正常启动

3.1引入pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.3.6</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.example</groupId>
    <artifactId>demo21</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>demo21</name>
    <description>demo21</description>

    <properties>
        <java.version>21</java.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>io.springboot.ai</groupId>
            <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
            <version>1.0.3</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <annotationProcessorPaths>
                        <path>
                            <groupId>org.projectlombok</groupId>
                            <artifactId>lombok</artifactId>
                        </path>
                    </annotationProcessorPaths>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <configuration>
                    <excludes>
                        <exclude>
                            <groupId>org.projectlombok</groupId>
                            <artifactId>lombok</artifactId>
                        </exclude>
                    </excludes>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>

3.2配置application.yml

server:
  port: 8088
spring:
  application:
    name: demo21
  ai:
    ollama:
      base-url: http://localhost:11434
      chat:
        options:
          model: deepseek-r1:1.5b

3.2创建Controller

import org.springframework.ai.chat.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatClient;
import org.springframework.ai.ollama.api.OllamaOptions;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class OllamaClientController {

    @Autowired
    @Qualifier("ollamaChatClient")
    private OllamaChatClient ollamaChatClient;

    /**
     * http://localhost:8088/ollama/chat/v1?msg=java就业前景
     */
    @GetMapping("/ollama/chat/v1")
    public String ollamaChat(@RequestParam String msg) {
        return this.ollamaChatClient.call(msg);
    }

    /**
     * http://localhost:8088/ollama/chat/v2?msg=java就业前景
     */
    @GetMapping("/ollama/chat/v2")
    public Object ollamaChatV2(@RequestParam String msg) {
        Prompt prompt = new Prompt(msg);
        ChatResponse chatResponse = ollamaChatClient.call(prompt);
        return chatResponse.getResult().getOutput().getContent();
    }

    /**
     * http://localhost:8088/ollama/chat/v3?msg=java就业前景
     */
    @GetMapping("/ollama/chat/v3")
    public Object ollamaChatV3(@RequestParam String msg) {
        Prompt prompt = new Prompt(
                msg,
                OllamaOptions.create()
                        .withModel("deepseek-r1:1.5b")
                        .withTemperature(0.4F));
        ChatResponse chatResponse = ollamaChatClient.call(prompt);
        return chatResponse.getResult().getOutput().getContent();
    }
    
    /**
    * 流式回答
    * http://localhost:8088/ollama/chat/v4?msg=java就业前景
 	*/
	@GetMapping(value = "/ollama/chat/v4",produces = MediaType.TEXT_EVENT_STREAM_VALUE)
	public Flux<String> ollamaChatV5(@RequestParam String msg) {
    	Prompt prompt = new Prompt(msg);
    	Flux<String> stream = ollamaChatClient.stream(prompt).map(chatResponse -> chatResponse.getResult().getOutput().getContent());
    	return stream;
	}

}

在这里插入图片描述
代码地址: https://gitee.com/most66/demo-deepseek

4.python调用

pip引入

pip install ollama

创建.py文件

import ollama

# 流式输出
def api_generate(text: str):
    print(f'提问:{text}')

    stream = ollama.generate(
        stream=True,
        model='deepseek-r1:1.5b',
        prompt=text,
    )

    print('-----------------------------------------')
    for chunk in stream:
        if not chunk['done']:
            print(chunk['response'], end='', flush=True)
        else:
            print('\n')
            print('-----------------------------------------')
            print(f'总耗时:{chunk['total_duration']}')
            print('-----------------------------------------')

def api_chat(text: str):
    print(f'提问:{text}')

    stream = ollama.chat(
        stream=True,
        model='deepseek-r1:1.5b',
        messages=[{"role":"user","content":text}]
    )

    print('-----------------------------------------')
    for chunk in stream:
        if not chunk['done']:
            print(chunk['message'].content, end='', flush=True)
        else:
            print('\n')
            print('-----------------------------------------')
            print(f'总耗时:{chunk['total_duration']}')
            print('-----------------------------------------')

if __name__ == '__main__':
    # 流式输出
    api_generate(text='python就业前景')
    
    api_chat(text='python就业前景')

    # 非流式输出
    content = ollama.generate(model='deepseek-r1:1.5b', prompt='python就业前景')
    print(content)

    content = ollama.chat(model='deepseek-r1:1.5b', messages=[{"role":"user","content":'python就业前景'}])
    print(content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值