(七)用Pytorch完成手写数字识别
import torch
import torch.nn as nn
import torch.nn.functional as func
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# 训练参数设置
kernel_size = 5
batch_size = 64
epoch_num = 10
# 下载MNIST数据集,并加载
train_dataset = datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data/', train=False, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# 网络搭建
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=kernel_size)
self.conv2 = nn.Conv2d(10, 20, kernel_size=kernel_size)
self.mp = nn.MaxPool2d(2)
self.fc = nn.Linear(320, 10)
def forward(self, x):
in_size = x.size(0)
x = func.relu(self.mp(self.conv1(x)))
x = func.relu(self.mp(self.conv2(x)))
x = x.view(in_size, -1)
x = self.fc(x)
return func.log_softmax(x)
# 生成实例,选择优化器
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 训练过程
def train(epoch):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = func.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 200 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 测试过程
def test():
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += func.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# 主函数
if __name__=="__main__":
for epoch in range(1, epoch_num):
train(epoch)
test()