FCOS中基于FPN的多尺度预测--FCOSHead

FCOS是一种基于FCN的检测器,尽管其特征映射的步长可能导致看似较低的边界框召回率(BPR),但实验证明,即使在大步长下,FCOS仍能实现良好的BPR,甚至优于RetinaNet在Detectron中的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Here BPR is defined as the ratio of the number of ground-truth boxes a detector can recall at the most divided by all ground-truth boxes.
For FCOS, at the first glance one may think that the BPR can be much lower than anchor-based detectors because it is impossible to recall an object which no location on the final feature maps encodes due to a large stride. Here, we empirically show that even with a large stride, FCN-based FCOS is still able to produce a good BPR, and it can even better than the BPR of the anchor-based detector RetinaNet [15] in the official implementation Detectron [7] (refer to Table 1).

class FCOSModule
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gallant Hu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值