对一些例题及细节进行了思考,整理了些思路。
目录
3. (F(x))^n 与 F(x1)……F(xn) 的区别
1. Z=离散X+连续Y
注:① 函数的表达要注意看脚标和括号。脚标指的是谁(哪个变量)对应的分布,括号内指的是把谁(哪个变量)代入这个函数。所以 指把随机变量 Z 的具体取值 z 代入随机变量 Z 对应的密度函数。
是把随机变量 Z 的取值 z 代入 Y 对应的密度函数。
② 这道题的本意是,求 Z 的密度,但是 Z 与 X、Y 有关,而 X 是 离散型变量,所以可以把 X 的各取值代入,而不必在最后 Z的密度函数中出现。这里可以看成全概率公式,在每一种 X 取值下计算并求和。所以相当于是在 X 取某些值的情况下,要把 z 代入 Y 的密度函数中,这就是题意。
③ f(z) 与 f(z-1) 在 0≤z≤2 内,取值分别是0和1,所以和始终为1。