转录因子(transcription factors, TFs)是直接作用于转录组上,调控DNA转录的蛋白质。它通过与DNA特定区域结合,促进(activator)或阻止(repressor)DNA的转录过程。
了解转录因子对于了解细胞的功能及生命活动有重要作用。SCENIC就是一个常见的、基于单细胞转录组数据分析转录因子活性、基因调控网路的工具。SCENIC的分析主要分为三步,第一步通过基因之间的共表达,找到可能的转录因子。第二步是进行转录因子-motif的富集分析并找到对应的靶基因(调控组regulon)。第三步是对调控组的活跃程度进行评分。
第一步由GENIE3或GRNBoost实现。GENIE3用转录因子的表达量,通过训练随机森林(random forest)模型来预测各基因的表达量,从而得到转录因子在预测每个基因转录时的权重。这个权重反映了转录因子对于预测基因转录水平的相关性。相关性越高,则代表基因更有可能是该转录因子的靶基因。
随机森林是由多个决策树形成的分类器,它通过有放回的抽样训练出多个决策树,再以决策树结果中的众数为最终的结果。更详细的解释,可见:https://zhuanlan.zhihu.com/p/57965634
GENIE3的输入为基因表达矩阵,可以是UMI、TPM,或者FPKM/RPKM。而GENIE3的输出为基因、可能参与该基因的转录因子,以及它们的该转录因子的重要性(importance measure, IM),即其在预测基因转录水平时的权重。只有当权重高于0.001时,该转录因子才被认为是可能参与该基因调控的转录因子。
因为随机森林需要进行多次抽样,训练出多个决策树,当数据量很大时,这一步非常花时间,因此针对较大的数据,第一步可以用GRNBoost,它使用了梯度提升算法,在训练新的决策树时,会提高上一个决策树出错的样本比例,