数论继续学习6---数论倒数,又称逆元

本文详细介绍了数论中的逆元概念及其求解方法,包括扩展欧几里得算法、费马小定理以及一种O(n)的递推方法。逆元在解决含有模运算的除法问题时非常有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数论继续学习6---数论倒数,又称逆元

数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元)

数论中的倒数是有特别的意义滴


先来引入求余概念 

(a +  b) % p = (a%p +  b%p) %p  (对)

(a  -  b) % p = (a%p  -  b%p) %p  (对)

(a  *  b) % p = (a%p *  b%p) %p  (对)

(a  /  b) % p = (a%p  /  b%p) %p  (错)

 

为什么除法错的

证明是对的难,证明错的只要举一个反例

(100/50)%20 = 2       ≠      (100%20) / (50%20) %20 = 0

 

对于一些题目,我们必须在中间过程中进行求余,否则数字太大,电脑存不下,那如果这个算式中出现除法,我们是不是对这个算式就无法计算了呢?

答案当然是 NO (>o<)


这时就需要逆元了

 

我们知道

如果 a*x = 1;

那么 x 是 a 的倒数, x = 1/a;

但是a如果不是1,那么x就是小数

那数论中,大部分情况都有求余,所以现在问题变了

a*x  = 1 (mod p)

那么x一定等于1/a吗

不一定

所以这时候,我们就把x看成a的倒数,只不过加了一个求余条件,所以x叫做:    a关于p的逆元

 

比如2 * 3 % 5 = 1,那么3就是2关于5的逆元,或者说2和3关于5互为逆元

这里3的效果是不是跟1/2的效果一样,所以才叫数论倒数(逆元

 

a的逆元,我们用inv(a)来表示

 

那么(a  /  b) % p = (a * inv(b) ) % p = (a % p * inv(b) % p) % p

这样就把除法,完全转换为乘法了 (。・ω・),乘法超容易

 

 

 

 

正篇开始

 

逆元怎么求

(注:忘了说,a和p互质,a才有关于p的逆元)

 




方法一:

1.扩展欧几里得。aa^-1≡ 1(mod p),可以转换为aa^-1 + py = 1,即是扩展欧几里得所能解的ax + by = gcd(a, b)。最常用的解法。

int x, y;
int extgcd(int a, int b, int &x, int &y)
{
    if (b == 0){
        x = 1;
        y = 0;
        return a;
    }
    int gcd = exgcd(b, a % b, x, y);
    int tmp = x;
    x = y;
    y = tmp - (a/b) * y;
    return gcd;
}

/*
求解ax+by=gcd(a,b),亦即ax≡1(mod b)。函数返回值是a,b的最大公约数,而x即a的逆元。
注意a, b不能写反了。
*/





方法二:

 

费马曾经说过:不想当数学家的数学家不是好数学家(( ̄▽ ̄)~*我随便说的,别当真)

费马小定理

a^(p-1) ≡1 (mod p)

两边同除以a

a^(p-2) ≡1/a (mod p)

什么(,,• ₃ •,,),这可是数论,还敢写1/a

应该写a^(p-2) ≡ inv(a) (mod p)

 

所以inv(a) = a^(p-2) (mod p)

这个用快速幂求一下,复杂度O(logn)(ง •̀_•́)ง 

代码如下:

ll pow_mod(ll a, ll b, ll p){ //矩阵快速幂求a^b%p;
    ll ans = 1;
    while(b)
    {
        if(b&1) ans = (ans*a)%p;
        a = (a*a)%p;
        b >>= 1;
    }
    return ans;
}

ll Fermat(ll a, ll p){        //费马求a关于p的逆元
        return pow_mod(a, p-2, p);
}


方法三:

网上看到的一个很厉害的o(n)的递推,求前n个逆元,不知道是怎么推出来的,但是可以简单地证明一下正确性(要求所mod p为素数)。

首先,1的逆元是1,没什么疑问。
假设前i个数的逆元已经求出,那么
i^-1 = (p%i)^-1 * (p - [p/i]) % p。其中[]表示去尾取整。
(p%i)^-1其实就是(p-[p/i]i)^-1,然后我们左右乘以i,
ii^-1 = (p-[p/i]i)^-1 * ((i-1)p + p-[p/i]i) % p,
其实就是ii^-1 = k^-1 * ((i-1)p + k) % p = 0 + 1 = 1,这样就证完了=。=

//字体真糟糕。。

int[] inv = new int[MAXN];
inv[1] = 1;
for (int i = 2; i<MAXN; i++)
    inv[i] = inv[MOD%i]*(MOD-MOD/i)%MOD;


网上有推导


稍后有错误我直接在博客上修改。。。。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值