除法求模:
(a/b)%p=(ainv(b))%p=(a%pinv(b)%p)%p
逆元求解:
1、费马小定理(a与p互质才有a关于p的逆元)
因为a^(p-1)≡1(mod p)
两边同时除以a
a^(p-2)≡inv(a)(mod p)
inv(a)=a^(p-2)(mod p)
可以用快速幂求解
应用:
组合数求解:
ll fact[300000];
ll infact[300000];
ll mod=1e9+7;
long long fastpower(long long base,long long power,long long mod)
{
ll ans=1%mod;
while(power)
{
if(power&1)
{
ans=ans*base%mod;
}
base=base*base%mod;
power>>=1;
}
return ans;
}
int main()
{
fact[0]=1;
infact[0]=1;
for(ll i=1;i<=200000;i++)
{
fact[i]=fact[i-1]*i%mod;
infact[i]=infact[i-1]*fastpower(i,mod-2,mod)%mod;
}
ll n,a,b;
scanf("%lld",&n);
for(ll i=1;i<=n;i++)
{
scanf("%lld%lld",&a,&b);
printf("%lld\n",(fact[a]*infact[a-b]%mod)*infact[b]%mod);
}
return 0;
}
2、扩展欧几里得
ax+by=1
如果a、b互质,则有解,x即为a关于b的逆元,y就是b关于a的逆元
两边同时对a和b求模即可得到
#include<cstdio>
typedef long long LL;
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = 1, y = 0;}
else{
ex_gcd(b, a % b, y, x, d);
y -= x * (a / b);
}
}
LL inv(LL t, LL p){//如果不存在,返回-1
LL d, x, y;
ex_gcd(t, p, x, y, d);
return d == 1 ? (x % p + p) % p : -1;
}
int main(){
LL a, p;
while(~scanf("%lld%lld", &a, &p)){
printf("%lld\n", inv(a, p));
}
}
3、当p是质数时有
inv(a)=(p-p/a)*inv(p%a)%p
证明:
设x = p % a,y = p / a
于是有 x + y * a = p
(x + y * a) % p = 0
移项得 x % p = (-y) * a % p
x * inv(a) % p = (-y) % p
inv(a) = (p - y) * inv(x) % p
于是 inv(a) = (p - p / a) * inv(p % a) % p
然后一直递归到1为止,因为1的逆元就是1
递归代码:
#include<cstdio>
typedef long long LL;
LL inv(LL t, LL p) {//求t关于p的逆元,注意:t要小于p,最好传参前先把t%p一下
return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p;
}
int main(){
LL a, p;
while(~scanf("%lld%lld", &a, &p)){
printf("%lld\n", inv(a%p, p));
}
}
递推代码:
#include<cstdio>
const int N = 200000 + 5;
const int MOD = (int)1e9 + 7;
int inv[N];
int init(){
inv[1] = 1;
for(int i = 2; i < N; i ++){
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
}
int main(){
init();
}