Feb.27~image super-resolution reconstruction, paper reading

Multi-frame image super-resolution reconstruction via low-rank fusion combined with sparse coding

这篇文章看起来和2月初读的一篇关于图像去噪是自相矛盾的,这篇文章可以方法成立的条件是,HR和LR图片用字典表示时候的协方差系数矩阵是类似的,也就是那个 α \alpha α 在两种情况下是一样的。在求解中也应用到了从三个方向特征提取的技巧,还有K-SVD方法。

(思考:那么在这里的特征提取是否可以接入神经网络,模型自己训练,自己提取特征呢?)这里面提取特征是在第二部,是为了提取出特征之后这些特征向量组成训练集,再用K-SVD方法提取出字典。

之前的文章中,两种情况下的 α \alpha α 是有偏差的,之后在模型优化中,专门加入了一项,表示两个协方差的距离,接着进行一系列的估计,迭代,然后求解。

According to the number of input LR images, image SR can be divided into single -frame and multi - frame.

Single-frame SR refers to restore a HR image from a LR image, and multi-frame SR means to recover a HR image from LR image sequence.

2. Low rank fusion and sparse coding

2.1 Low rank fusion

A data matrix M ∈ R n × m M\in \Bbb{R}^{n\times m} MRn×m contains structural information as well as noise. Then we can decompose M as
M = L + S
where L is low-rank matrix(contains the internal structure information which are linearly related.)
S is sparse (noise is sparse)
RPCA(robust principle component analysis) method model used to optimize above problem:
m i n L , S   r a n k ( L ) + λ ∣ ∣ S ∣ ∣ 0 , s . t . M = L + S     ( 1 ) \underset{L,S}{min}~rank(L)+\lambda||S||_0, s.t. M = L +S~~~(1) L,Smin rank(L)+λS0,s.t.M=L+S   (1)
λ \lambda λ is a balance parameter.
(1) is a non-convex problem and it can be replaced by (2)
m i n L , S   ∣ ∣ L ∣ ∣ ∗ + λ ∣ ∣ S ∣ ∣ 1 , s . t . M = L + S     ( 2 ) \underset{L,S}{min}~||L||_*+\lambda||S||_1, s.t. M = L +S~~~(2) L,Smin L+λS1,s.t.M=L+S   (2)
Augmented Lagrange Multiplier (ALM) algorithm is usually used to solve (2)

Supposing there are N frame registered images, then they are converted into a column vector and stored in a matrix by column. Now the matrix M={ M 1 , M 2 , ⋯ M N M_1,M_2,⋯M_N M1,M2,MN} has low-rank characteristics.
Next we decompose the matrix by low-rank and sparse decomposition.
Finally the decomposed low-rank part L = { L 1 , L 2 , ⋯ L N L_1, L_2, ⋯L_N L1,L2,LN} is average fused to get the final fusion LR image L∗ =( L 1 + L 2 + ⋯ + L N L_1 +L_2 +⋯+L_N L1+L2++LN)/N,
在这里插入图片描述
在这里插入图片描述

2.2 Sparse coding

After down sampling S and fuzzy B, HR image X is degenerated into LR image Y:
Y = S B X            ( 3 ) Y = SBX ~~~~~~~~~~(3) Y=SBX          (3)
Where SB = L, Y = LX.
If y is an image patch taken from Y ,x is an image patch taken from X which is in the same location with y.
The sparse representation model can be represented as following:
m i n ∣ ∣ α ∣ ∣ 1 , s . t . x = D h α        ( 4 ) min ||\alpha||_1, s.t. x= D_h\alpha~~~~~~(4) minα1,s.t.x=Dhα      (4)
D h ∈ R n × K D_h\in\Bbb{R}^{n\times K} DhRn×K(K>n) is a HR over-complete dictionary.
According to (3)(4), so y can be expressed as following:
y = L D h α = D l α                ( 5 ) y = LD_h\alpha = D_l \alpha~~~~~~~~~~~~~~(5) y=LDhα=Dlα              (5)
Where D l = L D h , D l ∈ R m × K D_l = LD_h, D_l\in \Bbb{R}^{m\times K} Dl=LDh,DlRm×K(K>m) is a LR over-complete dictionary.
So it can be clarified that HR and LR image patches have the same sparse representation coefficient. ( α x = α y \alpha_x = \alpha_y αx=αy)
Based on a pair of HR and LR dictionaries { D h , D l D_h, D_l Dh,Dl}, we are able to rebuild the correspond- ing HR image patch as long as we acquire sparse representation coefficient of the LR image patch.

3. Multi-frame image SR via low-rank fusion combines with sparse coding

在这里插入图片描述

3.1 method

The Multi-frame SR using low-rank fusion combines with sparse coding includes three steps: image registration and low-rank fusion, { D h , D l D_h, D_l Dh,Dl} dictionary training and SR reconstruction, as shown in Fig. 3.
In image registration and low-rank fusion phase, SURF and RANSAC algorithm are used to image registration. Then registered images are decomposed into the low-rank images and the sparse images, and the low-rank images are fused into a LR image.
In { D h , D l D_h, D_l Dh,Dl} dictionary training phase, patch haar wavelet transform is used to get image patches characteristic vectors, and characteristic vectors constitute the joint training set. K-SVD algorithm is applied to train joint training set to obtain the { D h , D l D_h, D_l Dh,Dl}.
In SR reconstruction phase, after computing sparse representation coefficient α \alpha α of LR patch, the HR patch can be obtained from the coefficient α \alpha α multiplied by the HR dictionary D h D_h Dh.
在这里插入图片描述

在这里插入图片描述

The END of Method of this paper.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值