Feb.27~image super-resolution reconstruction, paper reading

本文提出一种结合低秩融合与稀疏编码的多帧图像超分辨率重建方法。该方法利用低秩矩阵分解去除噪声,保留图像内部结构信息,通过稀疏编码实现高分辨率和低分辨率图像间的特征匹配。实验过程包含图像配准、字典训练及超分辨率重建三步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-frame image super-resolution reconstruction via low-rank fusion combined with sparse coding

这篇文章看起来和2月初读的一篇关于图像去噪是自相矛盾的,这篇文章可以方法成立的条件是,HR和LR图片用字典表示时候的协方差系数矩阵是类似的,也就是那个 α\alphaα 在两种情况下是一样的。在求解中也应用到了从三个方向特征提取的技巧,还有K-SVD方法。

(思考:那么在这里的特征提取是否可以接入神经网络,模型自己训练,自己提取特征呢?)这里面提取特征是在第二部,是为了提取出特征之后这些特征向量组成训练集,再用K-SVD方法提取出字典。

之前的文章中,两种情况下的α\alphaα 是有偏差的,之后在模型优化中,专门加入了一项,表示两个协方差的距离,接着进行一系列的估计,迭代,然后求解。

According to the number of input LR images, image SR can be divided into single -frame and multi - frame.

Single-frame SR refers to restore a HR image from a LR image, and multi-frame SR means to recover a HR image from LR image sequence.

2. Low rank fusion and sparse coding

2.1 Low rank fusion

A data matrix M∈Rn×mM\in \Bbb{R}^{n\times m}MRn×m contains structural information as well as noise. Then we can decompose M as
M = L + S
where L is low-rank matrix(contains the internal structure information which are linearly related.)
S is sparse (noise is sparse)
RPCA(robust principle component analysis) method model used to optimize above problem:
minL,S rank(L)+λ∣∣S∣∣0,s.t.M=L+S   (1)\underset{L,S}{min}~rank(L)+\lambda||S||_0, s.t. M = L +S~~~(1)L,Smin rank(L)+λS0,s.t.M=L+S   (1)
λ\lambdaλ is a balance parameter.
(1) is a non-convex problem and it can be replaced by (2)
minL,S ∣∣L∣∣∗+λ∣∣S∣∣1,s.t.M=L+S   (2)\underset{L,S}{min}~||L||_*+\lambda||S||_1, s.t. M = L +S~~~(2)L,Smin L+λS1,s.t.M=L+S   (2)
Augmented Lagrange Multiplier (ALM) algorithm is usually used to solve (2)

Supposing there are N frame registered images, then they are converted into a column vector and stored in a matrix by column. Now the matrix M={M1,M2,⋯MNM_1,M_2,⋯M_NM1,M2,MN} has low-rank characteristics.
Next we decompose the matrix by low-rank and sparse decomposition.
Finally the decomposed low-rank part L = {L1,L2,⋯LNL_1, L_2, ⋯L_NL1,L2,LN} is average fused to get the final fusion LR image L∗ =(L1+L2+⋯+LNL_1 +L_2 +⋯+L_NL1+L2++LN)/N,
在这里插入图片描述
在这里插入图片描述

2.2 Sparse coding

After down sampling S and fuzzy B, HR image X is degenerated into LR image Y:
Y=SBX          (3)Y = SBX ~~~~~~~~~~(3)Y=SBX          (3)
Where SB = L, Y = LX.
If y is an image patch taken from Y ,x is an image patch taken from X which is in the same location with y.
The sparse representation model can be represented as following:
min∣∣α∣∣1,s.t.x=Dhα      (4)min ||\alpha||_1, s.t. x= D_h\alpha~~~~~~(4)minα1,s.t.x=Dhα      (4)
Dh∈Rn×KD_h\in\Bbb{R}^{n\times K}DhRn×K(K>n) is a HR over-complete dictionary.
According to (3)(4), so y can be expressed as following:
y=LDhα=Dlα              (5)y = LD_h\alpha = D_l \alpha~~~~~~~~~~~~~~(5)y=LDhα=Dlα              (5)
Where Dl=LDh,Dl∈Rm×KD_l = LD_h, D_l\in \Bbb{R}^{m\times K}Dl=LDh,DlRm×K(K>m) is a LR over-complete dictionary.
So it can be clarified that HR and LR image patches have the same sparse representation coefficient. (αx=αy\alpha_x = \alpha_yαx=αy)
Based on a pair of HR and LR dictionaries {Dh,DlD_h, D_lDh,Dl}, we are able to rebuild the correspond- ing HR image patch as long as we acquire sparse representation coefficient of the LR image patch.

3. Multi-frame image SR via low-rank fusion combines with sparse coding

在这里插入图片描述

3.1 method

The Multi-frame SR using low-rank fusion combines with sparse coding includes three steps: image registration and low-rank fusion, {Dh,DlD_h, D_lDh,Dl} dictionary training and SR reconstruction, as shown in Fig. 3.
In image registration and low-rank fusion phase, SURF and RANSAC algorithm are used to image registration. Then registered images are decomposed into the low-rank images and the sparse images, and the low-rank images are fused into a LR image.
In {Dh,DlD_h, D_lDh,Dl} dictionary training phase, patch haar wavelet transform is used to get image patches characteristic vectors, and characteristic vectors constitute the joint training set. K-SVD algorithm is applied to train joint training set to obtain the {Dh,DlD_h, D_lDh,Dl}.
In SR reconstruction phase, after computing sparse representation coefficient α\alphaα of LR patch, the HR patch can be obtained from the coefficient α\alphaα multiplied by the HR dictionary DhD_hDh.
在这里插入图片描述

在这里插入图片描述

The END of Method of this paper.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值