Feb20-paper reading-Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction

1. Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction

MY NOTES:
结合之前读过类似的image denoising 或者图像重建的文章,最后都是转化成一个优化问题,在上次讲过的论文中,作者使用稀疏矩阵的方法来解决优化问题,最后的优化问题还是转化成一个迭代问题求解。

在本文中,同样优化问题改编为两部迭代求解最优化的问题,但是在迭代中,迭代的每一步,作者引入CRNN的框架,不再需要提前确定一些超参数来求解,完全依靠模型自己去训练和学习。
其中的CRNN block 可以作为梯度下降求解最优化问题的梯度下降迭代项。

本文最主要的就是图片中的那个结构。

Object:Accelerate the data acquisition of dynamic MRI.
The key issue of the problem is how to exploit the temporal correlations of the MR sequences to resolve aliasing artefacts.

The image can be reconstructed by solving an optimisation problem.

However, the challenges of these optimisation based approaches are the following:

  • firstly, the regularisation functions and their hyper-parameters must be carefully selected, which are problem-specific and non-trivial.For example, over-imposing sparsity or L1 penalties can lead to cartoon-like/staircase artefacts.
  • Secondly, the reconstruction speeds of these methods are often slow due to requirement to solve iterative algorithms. Proposing a robust iterative algorithm is still an active area of research.

Deep learning based methods are gaining popularity for their accuracy and efficiency.

Unlike traditional approaches, the prior information and regularisation are learnt implicitly from data, without having to specify them in the training objective.

In this work, our contribution:

we propose a novel convolutional recurrent neural network (CRNN) method to reconstruct high quality dynamic MR image sequences from under-sampled data, termed CRNN-MRI.

  1. Firstly, we formulate a general optimisation problem for solving accelerated dynamic MRI based on variable splitting and alternate minimisation.

We then show how this algorithm can be seen as a network architecture.
In particular, the proposed method consists of a CRNN block which acts as the proximal operator and a data consistency layer corresponding to the classical data fidelity term.
In addition, the CRNN block employs recurrent connections across each iteration step, allowing reconstruction information to be shared across the multiple iterations of the process.

  1. Secondly, we incorporate bidirectional convolutional recurrent units evolving over time to exploit the temporal dependency of the dynamic sequences and effectively propagate the contextual information across time frames of the input.

As a consequence, the unique CRNN architecture jointly learns representations in a recurrent fashion evolving over both time sequences as well as iterations of the reconstruction process, effectively combining the benefits of traditional iterative methods and deep learning.

Model: CRNN-MRI
A: Problem Formulation

x ∈ \in C D C^D CD(complexed-valued MR images to be reconstructed)
D = D x D y T D_x D_y T DxDyT
y ∈ C M \in C^M CM (M << D)
y is the under-sampled k-space measurements

D x D y D_x D_y DxDy is the width and height of frame;
T is the number of frames.
our problem: is to reconstruct x from y

Model:

argmin x _x x R ( x ) + λ ∣ ∣ y − F u x ∣ ∣ 2 2 R(x) + \lambda|| y - F_ux ||_2 ^2 R(x)+λyFux22 (1)
F u F_u Fu: an undersampling Fourier encoding matrix
R: regularisation terms on x
λ \lambda λ: adjustment of data fidelity.

Always we can use variable splitting technique to handle the model above.

We introduce another variable z, and (1) can be transformed to (2)

argmin x , z _{x,z} x,z R ( z ) + λ ∣ ∣ y − F u x ∣ ∣ 2 2 R(z) + \lambda|| y - F_ux ||_2^2 R(z)+λyFux22 + μ ∣ ∣ x − z ∣ ∣ 2 2 \mu||x-z||_2^2 μxz22                      ~~~~~~~~~~~~~~~~~~~~                     (2)
μ \mu μ: penalty parameter

Then we apply alternate minimisation over x and z, and then we get:
z ( i + 1 ) z^{(i+1)} z(i+1)= argmin z _z z R(z) + μ ∣ ∣ x − z ∣ ∣ 2 2 \mu||x-z||_2^2 μxz22                                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                          (3a)
x ( i + 1 ) = a r g m i n x λ ∣ ∣ y − F u x ∣ ∣ 2 2 + μ ∣ ∣ x − z ( i + 1 ) ∣ ∣ 2 2 x^{(i+1)} = argmin_x \lambda|| y - F_ux ||_2^2+\mu||x-z^{(i+1)}||_2^2 x(i+1)=argminxλyFux22+μxz(i+1)22               ~~~~~~~~~~~~~              (3b)

Then during our iteration, x ( 0 ) = x μ = F u H y x^{(0)}=x_{\mu}=F_u^Hy x(0)=xμ=FuHy, which is a zero-filled reconstruction taken as an initialisation.
z can be seen as an intermediate state of optimisation process.

For MRI reconstruction, 3b is often regarded as a data consistency(DC) steps.

In this formula, F is full Fourier encoding matrix.
λ 0 = λ μ \lambda_0 = \frac{\lambda}{\mu} λ0=μλ is ratio of regularisation parameters.
Λ \Lambda Λ is diagonal matrix.

But in Deep-ADMM method , they unroll the traditional optimisation algorithm to.
x ( 0 ) → z ( 1 ) → x ( 1 ) → z ( 2 ) → x ( 2 ) → . . . . . . . . → z ( N ) → x ( N ) x^{(0)}\rightarrow z^{(1)}\rightarrow x^{(1)}\rightarrow z^{(2)}\rightarrow x^{(2)}\rightarrow ........\rightarrow z^{(N)}\rightarrow x^{(N)} x(0)z(1)x(1)z(2)x(2)........z(N)x(N)
during this iteration, each state transition at stage(i) is an operation such as convolutions independently parametered by θ \theta θ.

But our model use CRNN, in which, each stage(i), as a learnt, recurrent, forward encoding step.
f i f_i fi ( x ( i − 1 ) , z ( i − 1 ) ; θ , y , λ , Ω ) (x^{(i-1)},z^{(i-1)}; \theta, y, \lambda, \Omega ) (x(i1),z(i1);θ,y,λ,Ω)

B: CNN for MRI reconstruction

x r e c = f N ( f ( N − 1 ) ( . . . . . f 1 ( x μ ) ) ) x_{rec} = f_N(f_{(N-1)}(.....f_1(x_{\mu}))) xrec=fN(f(N1)(.....f1(xμ)))
x r e c x_{rec} xrec: prediction of the network
x μ x_{\mu} xμ: sequence of under-sampled image with length T and also is the input of the network
f i ( x μ ; θ , λ , Ω ) f_i(x_{\mu};\theta,\lambda,\Omega) fi(xμ;θ,λ,Ω) is the network function for each iteration of optimization step.
N is the number of iterations.

The model can be written as:
x r n n ( i ) = x r e c ( i − 1 ) + C R N N ( x r e c ( i − 1 ) ) x_{rnn}^{(i)}=x_{rec}^{(i-1)} + CRNN(x_{rec}^{(i-1)}) xrnn(i)=xrec(i1)+CRNN(xrec(i1))
x r e c ( i ) x_{rec}^{(i)} xrec(i) = DC( x r n n ( i ) ; y , λ 0 , Ω x_{rnn}^{(i)}; y,\lambda_0,\Omega xrnn(i);y,λ0,Ω)

DC can be treated as a network layer.

CRNN block is to encode the update steps, and can be seen as one step of gradient descent in object minimisation.
this block can be seen as the distance required to move to the next state in the network.

CRNN: is the learnable block,
x r e c ( i ) x_{rec}^{(i)} xrec(i) is progressive reconstruction of the under-sampled image x μ x_{\mu} xμ at iteration i with x r e c ( 0 ) = x μ x_{rec}^{(0)} = x_{\mu} xrec(0)=xμ.
x r n n ( i ) x_{rnn}^{(i)} xrnn(i) is the intermediate reconstruction image before the DC layer.
x r e c   ≈   x x_{rec}~\approx~x xrec  x
x r n n   ≈   z x_{rnn}~\approx~z xrnn  z in equation 3
y is the acquired k-space sample.
we want to reconstruct x from y.
each state: CRNN update its internal state H given an input.
Furthermore, CRNN block comprised of 5 components:

  1. bidirectional convolutional recurrent units evolving over time and iterations (BCRNN-t-i)
  1. convolutional recurrent units evolving over iterations only (CRNN-i)
  1. 2D convolutional neural network (CNN)
  2. residual connection
  3. DC layers.

That is the end of the model.

Appendix:
The example about bidirectional RNN

### 回答1: simam是一种简单的、无需参数的注意力模块,用于卷积神经网络。它可以帮助网络更好地捕捉输入数据中的重要信息,提高模型的性能。simam的设计简单,不需要额外的参数,可以方便地集成到现有的卷积神经网络中。 ### 回答2: SimAM(简单、无需参数的注意力模块)是一种卷积神经网络的注意力机制,旨在显著提高图像分类和物体检测任务的性能。这个模块可以自适应地学习到不同层的特征,并对其进行加权,以便更好地捕获相关信息并抑制噪声。 SimAM模块的核心思想是将一组特征向量传递到一个简单的多头自注意力层,以便为不同特征之间的联系评分,并生成那些较为重要的特征向量,这些向量随后用于后续的网络计算中。具体来说,SimAM模块将输入特征张量分为若干个通道,并将每个通道作为输入,送入多头自注意力层。该层是由若干个子层堆叠而成的,其中每个子层都包括一个多头自注意力机制和一些前向反馈层。自注意力机制可以捕捉到输入特征张量内部各个通道之间的关系,并生成相应的权重矩阵。前向反馈层可以帮助模型更好地适应各种难以预测的数据。 SimAM模块与传统的注意力机制相比,具有以下优点: 1.不需要额外的参数:SimAM模块不需要任何额外的参数,仅仅依靠了平移不变性和自注意力机制即可提取图像特征。 2.易于训练:模块中的每个子层都具有非常简单的结构,可以很容易地进行训练和调整参数。 3.高效:SimAM模块的计算成本低,且可以与传统的卷积神经网络结构相结合,以提高图像分类或物体检测的精度。 总之,SimAM模块是一种非常优秀的注意力机制,具有简单而有效的设计,可用于各种计算机视觉应用中。相信随着更多研究人员的关注,SimAM模块会在未来得到更多的应用和发展。 ### 回答3: Simam是一种简单的、无参数的卷积神经网络注意力模块,它能够提高卷积神经网路的性能。该模块的主要目的是为了实现对卷积层特征的自适应加权,从而优化卷积神经网络的训练过程。 在卷积神经网络中,每个卷积层都会生成一系列特征图,这些特征图可以被看作是卷积层对输入图像的不同抽取方式。在经过多层的卷积操作后,这些特征图逐渐变得抽象和复杂,也变得更具有区分度。然而,由于不同的特征图的质量和作用是不同的,因此,需要一种方法来自适应地对它们进行加权,以便提高整个网络的性能。 Simam模块的核心思想是使用特定的权重来实现对特征图进行加权。这些权重的计算不需要任何参数,而是通过应用一些简单的非线性映射来实现的。具体来说,Simam模块会对特征图进行归一化,然后通过一些非线性函数(如ReLU)进行变换,最终得到一个类似于置信度的分数,从而决定特征图的相对重要性。 在使用Simam模块的卷积神经网络中,该模块被添加在卷积层之后,可以作为一种自适应加权机制来对特征图进行加权。这种机制能够更加准确地区分每个特征图的质量和作用,从而提高整个卷积神经网络的性能。 总之,Simam模块是一种简单而有效的自适应加权机制,可以提高卷积神经网络的性能。在实际应用中,它可以被广泛应用于图像分类、物体检测、语义分割等领域,从而提高计算机视觉的精度和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值