基于mmclassification框架,ResNeSt-50网络训练标牌细分类模型

项目地址:https://github.com/open-mmlab/mmclassification
参考1:https://blog.youkuaiyun.com/weixin_34910922/article/details/107801656
参考2:https://blog.youkuaiyun.com/weixin_43216130/article/details/115312600
这两篇博文都写的很仔细,谢谢这两位同学

一、环境安装

1、首先查看python的版本
2、再查看cuda和pytorch的版本,是否对应

在这里插入图片描述

3、安装和cuda和pytorch对应版本的mmcv
pip install mmcv-full==1.3.10
pip uninstall mmcv

如果出现mmcv不能导入的库或者函数,一般是版本不对

4、测试一下环境是否正确
# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}]

python tools/test.py configs/imagenet/resnet50_batch256.py checkpoints/xxx.pth --out result.pkl

测试时,需要提供config文件和权重,我选的是这两个,测试环境的时候最好不要选imagenet后缀的,会下载imagenet数据集很大,耗时,如果是离线,还得自己去下载
在这里插入图片描述
权重文件的下载地址:https://github.com/open-mmlab/mmclassification/blob/master/docs/model_zoo.md

二、数据集准备

1、从平台下载得到的初始数据集

在这里插入图片描述

2、初始数据集裁剪 step1_cropbyjson.py

# -*- coding: utf-8 -*-
import glob
import os
import base64
import cv2
import numpy as np
import json
import datetime


def print_log(info: str, var: object = None, log_filename: str = None):
    time_info = '{0}'.format(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    if var is not None:
        print(time_info, info, var)
    else:
        print(time_info, info)
    if log_filename:
        with open(log_filename, 'a+', encoding='utf-8') as log_file:
            msg = time_info + ' ' + info + ' ' + str(var) if var else time_info + ' ' + info
            log_file.write(msg + '\n')


def get_info_from_json(fnm: str) -> list:
    """
    get box_list from json file
    :param fnm: json file path
    :return: [int: x_min, int: y_min, int: x_max, int: y_max, str: f_code]
    """
    json_file = open(fnm, 'r', encoding='utf-8')
    json_obj = json.load(json_file)
    try:
        objs, info_list = json_obj["objects"], []
        if not len(objs):
            return []
        for i in objs:
            bbox, f_code = i['obj_points'][0], i['f_code']
            info_list.append([round(bbox['x']), round(bbox['y']), round(bbox['x'] + bbox['w']), round(bbox['y'] + bbox['h']), f_code])
    except KeyError:
        print_log('{} has wrong(key error) json format.'.format(repr(fnm)))
        return []
    return info_list

def crop_image_func(json_file, exp_size, img_dir, img_crop_dir):
    box_list = get_info_from_json(json_file)
    _, fnm = os.path.split(json_file)
    img_file = os.path.join(img_dir, fnm[:-5] + '.jpg')
    # read image
    try:
        with open(img_file, 'rb') as f:
            base64_data = base64.b64encode(f.read())
        img_data = base64.b64decode(base64_data)
        img = cv2.imdecode(np.frombuffer(img_data, np.uint8), cv2.IMREAD_COLOR)
        img_h, img_w = img.shape[0], img.shape[1]
    except FileNotFoundError:
        print_log('{} is not found. please check.'.format(repr(img_file)))
        return None
    if img_h * img_w == 0:
        print_log('{} is broken. please check.'.format(repr(img_file)))
        return None
    # crop image and save
    for inx, box_item in enumerate(box_list):
        # box item: [1027, 610, 1034, 616, '0DFFFF']
        crop_img_name = fnm[:-5] + '_' + str(inx) + '_' + box_item[-1] + '.jpg'
        xmin, ymin, xmax, ymax, f_code = box_item
        crop_img_dir = os.path.join(img_crop_dir, f_code)
        if not os.path.exists(crop_img_dir):
            os.makedirs(crop_img_dir, exist_ok=True)
        # expand
        exp_w, exp_h = int(exp_size[0]/2), int(exp_size[1]/2)
        xmin = xmin - exp_w if xmin - exp_w > 0 else 0
        ymin = ymin - exp_h if ymin - exp_h > 0 else 0
        xmax = xmax + exp_w if xmax + exp_w < img_w else img_w
        ymax = ymax + exp_h if ymax + exp_h < img_h else img_h
        crop_img = img[ymin:ymax, xmin:xmax]
        cv2.imwrite(os.path.join(crop_img_dir, crop_img_name), crop_img)


def main():
    image_dir = '/root/data02/sign_mmtest/images'
    json_dir = '/root/data02/sign_mmtest/labels'
    image_crop_dir = '/root/data02/sign_mmtest/crop_image'
    expand_size = [10, 10] # [width, height]
    json_lst = glob.glob(os.path.join(json_dir, '*.json'))
    img_lst = glob.glob(os.path.join(image_dir, '*.jpg'))
    print_log('{} json files.'.format(len(json_lst)), '{} images.'.format(len(img_lst)))
    for i in json_lst:
        crop_image_func(i, expand_size, image_dir, image_crop_dir)

if __name__ == '__main__':
    main()

3、将裁剪后的数据集分为train和val,step2_split_trainval.py

import os
from shutil import copyfile

D_path = '/root/data02/sign_mmtest/crop_image'
classes = os.listdir(D_path)
trainfile = '/root/work/mmclassification/data/imagenet/train'
valfile = '/root/work/mmclassification/data/imagenet/val'

for i in classes:
    items = os.listdir(os.path.join(D_path,i))
    total_num = len(items)
    item_path = os.path.join(D_path,i)
    for j in range(0,total_num):
        tmp_img_path = os.path.join(item_path,items[j])
        if j < total_num*0.8:#560
            dst_dir = os.path.join(trainfile,i)
            if not os.path.exists(dst_dir):
                os.mkdir(dst_dir)
            copyfile(tmp_img_path,os.path.join(dst_dir,items[j]))
        else:
            dst_dir = os.path.join(valfile,i)
            if not os.path.exists(dst_dir):
                os.mkdir(dst_dir)
            copyfile(tmp_img_path,os.path.join(dst_dir,items[j]))

记得把类别名字都改成class0,class2...

4、生成train.txt和val.txt,step3_gentxt.py

import os
import glob
import re

# 生成train.txt和val.txt

#需要改为您自己的路径
root_dir = "/root/work/mmclassification/data/imagenet"
#在该路径下有train,val,meta三个文件夹
train_dir = os.path.join(root_dir, "train")
val_dir = os.path.join(root_dir, "val")
meta_dir = os.path.join(root_dir, "meta")

def generate_txt(images_dir,map_dict):
    # 读取所有文件名
    imgs_dirs = glob.glob(images_dir+"/*/*")
    # 打开写入文件
    typename = images_dir.split("/")[-1]
    target_txt_path = os.path.join(meta_dir,typename+".txt")
    f = open(target_txt_path,"w")
    # 遍历所有图片名
    for img_dir in imgs_dirs:
        # 获取第一级目录名称
        filename = img_dir.split("/")[-2]
        num = map_dict[filename]
        # 写入文件
        # relate_name = re.findall(typename+"/([\w / - .]*)",img_dir)
        # 数据名字格式不同,可能需要修改,检查下生成的txt格式对不对
        relate_name = img_dir.split("/")[-2:]
        # print("relate_name",relate_name)
        f.write(relate_name[0]+"/"+relate_name[1]+" "+num+"\n")

def get_map_dict():
    # 读取所有类别映射关系
    class_map_dict = {}
    with open(os.path.join(meta_dir,"classmap.txt"),"r") as F:
        lines = F.readlines()
        for line in lines:
            line = line.split("\n")[0]
            filename,cls,num = line.split(" ")
            class_map_dict[filename] = num
    return class_map_dict

if __name__ == '__main__':

    class_map_dict = get_map_dict()

    generate_txt(images_dir=train_dir,map_dict=class_map_dict)

    generate_txt(images_dir=val_dir,map_dict=class_map_dict)

train.txt和val.txt的内容如下:

class1/85_HDD15_2016-11-01125321_0_000005.jpg 0
class1/102_HDD14_2016-08-24095704_0_000005.jpg 0

其中classmap.txt需要写入如下内容:

class1 000005 0
class2 000010 1

最后的数据集格式如下:
在这里插入图片描述

5、step5_check32.py

如果遇到ValueError: Expected more than 1 value per channel when training, got input size
https://blog.youkuaiyun.com/u011622208/article/details/85230847
在这里插入图片描述
同时也要把val.txt的长度改成batch_size的倍数

三、配置文件修改

1、mmcls/datasets/mydataset.py

mmcls/datasets目录下新建py文件(名字自取,以mydataset.py为例),写入内容如下:(#****对应自己的类别)

第二次之后,就直接可以修改这脚本里面的类别名就可以了

import numpy as np

from .builder import DATASETS
from .base_dataset import BaseDataset


@DATASETS.register_module()
class MyDataset(BaseDataset):
    CLASSES = ["000005","000010"]#***********************************
    def load_annotations(self):
        assert isinstance(self.ann_file, str)

        data_infos = []
        with open(self.ann_file) as f:
            samples = [x.strip().split(' ') for x in f.readlines()]
            for filename, gt_label in samples:
                info = {'img_prefix': self.data_prefix}
                info['img_info'] = {'filename': filename}
                info['gt_label'] = np.array(gt_label, dtype=np.int64)
                data_infos.append(info)
            return data_infos

2、mmcls/datasets/init.py

第二次之后,这个脚本就不用修改了

添加内容如下:

from .mydataset import MyDataset

__all__ = [
    #增加MyDataset这一项
    'MyDataset'
]

添加后是这样的:

在这里插入图片描述

3、configs/base/datasets/mydataset.py

第二次之后,只要修改路径就行了

# dataset settings
dataset_type = 'MyDataset'#**************************************
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='RandomResizedCrop', size=224),
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='ToTensor', keys=['gt_label']),
    dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', size=(256, -1)),
    dict(type='CenterCrop', crop_size=224),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='Collect', keys=['img'])
]
data = dict(
    samples_per_gpu=32,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        data_prefix='/root/work/mmclassification/data/imagenet/train',#***************
        ann_file='/root/work/mmclassification/data/imagenet/meta/train.txt',#****************
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        data_prefix='/root/work/mmclassification/data/imagenet/val',#******************
        ann_file='/root/work/mmclassification/data/imagenet/meta/val.txt',#***************
        pipeline=test_pipeline),
    test=dict(
        # replace `data/val` with `data/test` for standard test
        type=dataset_type,
        data_prefix='/root/work/mmclassification/data/imagenet/val',#********************
        ann_file='/root/work/mmclassification/data/imagenet/meta/val.txt',#*******************
        pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')

四、开始训练

第一种是要先修改选择的config文件的数据类型

dataset_type = 'MyDataset'

第二种是集成自己的数据集类

_base_ = [
    '../_base_/models/resnet18.py', '../_base_/datasets/mydataset.py',
     '../_base_/default_runtime.py'
]

1、从零开始训练

python tools/train.py --config configs/resnet/resnet18_b32x8_imagenet.py
用哪个脚本就修改哪个脚本:

当然也可以直接修改tools/train中的config配置的默认参数:

def parse_args():
    parser = argparse.ArgumentParser(description='Train a model')
    parser.add_argument('--config',default="../configs/resnet/resnet18_b32x8_imagenet.py", help='train config file path')
    parser.add_argument('--work-dir', help='the dir to save logs and models')
    parser.add_argument(
        '--resume-from', help='the checkpoint file to resume from')

2、用预训练模型

从选择执行的config文件,比如我选的resnest_b64x32_imagenet.py,为了保留运行相关设置,继承了‘base/default_runtime.py’

每次预训练模型的位置参数,就在configs/_base_/dafault_runtime.py中修改load_from参数

# checkpoint saving
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=100,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable

dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from =  '/root/work/mmclassification/checkpoints/resnest50_b64x32_imagenet.pth'
resume_from = None
workflow = [('train', 1)]

五、测试

# single-gpu testing

# 查看测试的的类别预测矩阵等
python tools/test.py /root/work/mmclassification/work_dirs/resnet18_b32x8_imagenet/resnet18_b32x8_imagenet.py /root/work/mmclassification/work_dirs/resnet18_b32x8_imagenet/epoch_100.pth --out result_sign_test.pkl

# 查看准确率,recall等
# 可选的metrics有:accuacy,precision,recall,f1_score,support
python tools/test.py /root/work/mmclassification/work_dirs/resnet18_b32x8_imagenet/resnet18_b32x8_imagenet.py /root/work/mmclassification/work_dirs/resnet18_b32x8_imagenet/epoch_100.pth --metrics accuracy

查看测试结果的pkl文件的代码如下:

#show_pkl.py

import pickle
path='result_sign_test.pkl'   #path='/root/……/aus_openface.pkl'   pkl文件所在路径	   
f=open(path,'rb')
data=pickle.load(f)
print(data)
测试单张图片的分类结果
python demo/image_demo.py /root/work/mmclassification/demo/1.png /root/work/mmclassification/work_dirs/resnest50_b64x32_imagenet/resnest50_b64x32_imagenet.py /root/work/mmclassification/work_dirs/resnest50_b64x32_imagenet/epoch_2.pth
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值