参考文献:first-order methods in optimization: Amir Beck
1 Vector Spaces
1.1-1.4 基本空间、维数、范数、内积的概念
1.5 凸集、仿射集的定义【凸集分离定理】
1.6 内积诱导的欧几里得范数
1.7 R^n空间:主要是向量的p范数和无穷范数
1.8 R^mn空间:矩阵的范数 F范数 ab范数 2(谱)范数 1范数 无穷范数 【谱范数EVD SVD、1 无穷范数的定义】
1.11 对偶空间 对偶范数【2范数的对偶范数】
1.5 Affine Sets and Convex Sets
- affine set:
,
holds.
- aff(S): for a set
, aff(S) is the intersection of affine sets containing S.Clearly, it is the smallest affine set that containing S.
- hypeplane:
,
- half-spaces:
,
1.7 The Space 
- Q-inner product :
- norm of vector: p-范数:
-范数:
- norm of martix: 列范数:
行范数:
2-范数:
21-范数:
(每行2-范数求和)
1.7.1 Subsets of
(注)
- nongegative orthant:
(向量元素都大于等于0的)
- positive orthant:
(向量元素都大于0的)
- unit simplex:
(向量元素都大于等于0的且和为1的)
1.8 The Space 
1.8.2 Norms in 
- Frobenius norm:
- (a, b)-norm:
1.10 Linear Transforamtions
- linear-transformation:
1.11 The Dual Space
- linear functional:
- dual space
: all linear functional on
- dual norm:
- generalized Cauchy-Schwars inequlity:
- 向量范数对偶:需满足
,如 1与
范数,2范数本身
- 矩阵范数对偶:谱范数-核范数(特征值之和)
1.13 Adjoint Transformations
1.14 Norms of Linear Transformation