//eva 图像清晰度评价算法
double EvaImageDefinition(IplImage *roiImg)
{
_IplROI *rect=roiImg->roi;
int height=rect->height;
int width=rect->width;
uchar *pData=(uchar *)roiImg->imageData;
int step=roiImg->widthStep;
int sumD1=0;
int sumD2=0;
for(int y=rect->yOffset+1;y<rect->yOffset+height-1;++y)
{
for(int x=rect->xOffset+1;x<rect->xOffset+rect->width-1;++x)
{
uchar value=pData[y*step+x];
sumD1+=(abs(value-pData[(y-1)*step+x-1])+
abs(value-pData[(y-1)*step+x+1])+
abs(value-pData[(y+1)*step+x-1])+
abs(value-pData[(y+1)*step+x+1]))*707;
sumD2+=abs(value-pData[y*step+x-1])+
abs(value-pData[y*step+x+1])+
abs(value-pData[(y+1)*step+x])+
abs(value-pData[(y-1)*step+x]);
}
}
return (sumD1/707.0+sumD2)/((height-2)*(width-2));
}
//Tenegrad 图像清晰度评价算法 opencv实现
double TenegradImageDefinition (IplImage* src)
{
IplImage* sobelX = cvCreateImage( cvSize(src->width,src->height), IPL_DEPTH_16S, 1 );
IplImage* sobelY = cvCreateImage( cvSize(src->width,src->height), IPL_DEPTH_16S, 1 );
IplImage* sum = cvCreateImage( cvSize(src->width,src->height), IPL_DEPTH_16S, 1 );
cvSobel(src,sobelX,1,0,3);
cvSobel(src,sobelY,0,1,3);
cvAbs(sobelX,sobelX);
cvAbs(sobelY,sobelY);
cvAdd(sobelX,sobelY,sum);
CvScalar scalar=cvSum(sum);
cvReleaseImage(&sobelX);
cvReleaseImage(&sobelY);
cvReleaseImage(&sum);
return scalar.val[0]/(src->width*src->height);
}