诊断实验评估指标-灵敏度(sensitivity)特异度(specificity)准确度(accuracy)

本文介绍了医学诊断试验中重要的评估指标,包括灵敏度、特异度、准确度,以及阳性预测值和阴性预测值的概念。通过模拟试题解析这些指标的计算方法,并应用到软件效能评估上,如GATK和MuTect在全基因组测序SNV检测中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在临床上经常会用到诊断试验的手段,用于疾病诊断、病人随访或疗效监测等。判断某一诊断试验的结果是否真实、可靠,是否具有实用性,从而确定合理的医疗决策。

       一项诊断试验需要具备能正确的鉴别患病和未患病的能力,以反映患病实际情况的准确程度,这其中涉及到几个重要概念:灵敏度(sensitivity)、特异度(specificity)、准确度(accuracy)、阳性预测值以及阴性预测值。

      希望大家能够准确理解以上5个重要指标,并通过以下模拟试题练习加深理解。

      模拟试题:一项胃癌临床诊断试验受试人数是200人,实际情况为50人患胃癌,150人正常;诊断结果显示,有160人正常,40人诊断为胃癌,而这40人当中实则仅有35人真正患癌。请根据数据判断该项诊断试验的灵敏度(sensitivity)、特异度(specificity)、准确度(accuracy)、阳性预测值以及阴性预测值。

      其实,这5个指标在也适用于评价我们call变异所用的软件效能。比如:全基因组测序进行SNV检测时使用了2个软件: GATK和MuTect,共检出1300个变异,其中GATK检出1000个SNV,MuTect检出1100个SNV,共有SNV是800个;经过目标区域测序进行验证后,发现共有的800个突变均得到验证, GATK特有的SNV有80个得到验证,MuTect特有的SNV有150个得到验证(假定经过目标区域测序验证成功的SNV即为真实存在的突变&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值