论文学习笔记--无缺陷样本产品表面缺陷检测 A Surface Defect Detection Method Based on Positive Samples...

本文提出了一种基于正样本的新型表面缺陷检测框架,无需缺陷样本和手动标签。通过结合自编码器与GAN进行图像重建,通过比较原始图像和重建图像的LBP特征来定位缺陷。实验证明,该方法在有限正样本条件下,能实现高精度的缺陷检测,具有较高的实际应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章下载地址:A Surface Defect Detection Method Based on Positive Samples

第一部分  论文中文翻译

摘要:基于机器视觉的表面缺陷检测和分类可以大大提高工业生产的效率。利用足够的已标记图像,基于卷积神经网络的缺陷检测方法已经实现了现有技术的检测效果。 然而在实际应用中,缺陷样本或负样本通常难以预先收集,并且手动标记需要耗费大量时间。本文提出了一种仅基于正样本训练的新型缺陷检测框架。 其检测原理是建立一个重建网络,如果它们存在,可以修复样本中的缺陷区域,然后在输入样本和重建样本之间进行比较,以指示准确的缺陷区域。 我们将GAN和自编码结合起来重建缺陷图像,并使用LBP特征进行图像局部对比以检测缺陷。在算法的训练过程中,只需要正样本,无需缺陷样本和手动标签。本文利用织物图像和DAGM2007数据集进行了验证实验。实验表明,所提出的GAN + LBP算法和具有足够训练样本的监督训练算法具有较高的检测精度。 由于其无监督特性,具有较高的实际应用价值。

关键词:Positive samples, Surface defect detection, Autoencoder, GAN

1、介绍

表面缺陷检测在工业生产过程中起着非常重要的作用。它对市场上最终产品的质量和声誉产生重大影响。传统上,表面缺陷由人类目视检测,这是主观的,昂贵的,低效的和不准确的。

机器视觉系统可能替代人类视觉,但在实际应用中也遇到许多问题和挑战,特别是近年间用于区分缺陷和非缺陷的传统图像特征是基于经验手动设计的。传统图像特征提取算法的特征通常处于较低水平。在复杂的场景变化(例如照明变化,透视失真,遮挡,物体变形等)的情况下,所提取的特征通常不足以处理它们,因此许多算法在实际环境中不适用。如今,深度学习在提取图像特征方面表现的非常强大。卷积神经网络在各种监督问题上都达到了高精度,如分类,目标定位,语义分割等。

Faghih-Roohi等人[1]使用深度卷积神经网络在轨道表面进行缺陷检测。它将轨道图像分为6类,包括1类非缺陷图像和5类缺陷图像,然后用DCNN对它们进行分类;刘等人[2]提出了一种two-stage方法,它将选择性搜索的区域识别和卷积神经网络结合。它检测并识别所得区域,然后完成对胶囊表面缺陷的检测; Yu等人[3]使用两个FCN[4]语义分割网络来检测缺陷。其中一个是粗定位,另一个是精定位。它可以准确地绘制缺陷轮廓,并且在DAGM2007[12]的数据集上实现了比原始FCN更高的精度,并且可以实时完成。

所有上述算法都使用监督学习来检测缺陷。 在工业检测的实际应用中需要考虑两个问题:

训练样本中缺少缺陷/负样本。在实际问题中,训练样本中的缺陷图像总是较少,因为事先很难收集大量的缺陷样本。因此,训练过程中的正样本和负样本的数量极不平衡,因此生成的模型可能不稳定甚至无效。在缺陷外观多变且不可预测的场景中,监督学习的检测方法通常无法达到所需的精度。

手动标注代价高。在实际的缺陷检测应用中,通常存在许多不同的缺陷,检测标准和质量指标往往不同。这需要手动标记大量训练样本以满足特定需求,这需要大量人力资源。

针对上述监督学习算法实际应用中存在的问题,提出了一种基于正样本训练的缺陷检测方法。训练过程只需提供足够的正样本,无需提供缺陷样本,也无需手动标记,可以实现缺陷检测的效果。

2、相关工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值