Origins and Invention 起源与发明
Early 1960s: Conception and Patents 20世纪60年代初:概念和专利
- CMOS (Complementary Metal-Oxide-Semiconductor) technology was invented in 1963 by Frank Wanlass at Fairchild Semiconductor CMOS(互补金属氧化物半导体)技术是由飞兆半导体的Frank Wanlass于1963年发明的
- First CMOS patent (US Patent 3,356,858) filed in 1963, granted in 1967 1963年提交的第一项CMOS专利(美国专利3356858)于1967年获得授权
- Revolutionary concept: using complementary pairs of p-type and n-type MOSFETs for logic functions 革命性概念:使用互补的p型和n型MOSFET对实现逻辑功能
Early Development 早期发展
1968-1975: First Commercial Applications 1968-1975年:首次商业应用
- RCA pioneered early commercial CMOS with the CD4000 series in 1968 RCA于1968年率先推出了CD4000系列的早期商用CMOS
- Initial adoption was slow due to manufacturing challenges 由于制造业的挑战,最初的采用速度很慢
- Primary advantage: extremely low power consumption (nanowatts when static) 主要优点:极低的功耗(静态时为毫瓦)
- Early applications were in battery-powered devices and watches 早期的应用是电池供电的设备和手表
Key Early Limitations: 主要早期限制:
- Slower switching speeds than TTL 切换速度比TTL慢
- Lower integration density 集成密度更低
- Manufacturing complexity 制造复杂性
- Susceptibility to static discharge damage 易受静电放电损伤
Evolution and Improvement 进化与改进
Late 1970s: Growing Adoption 20世纪70年代末:采用率上升
- Manufacturing processes improved, reducing costs 改进制造工艺,降低成本
- Supply voltages standardized around 5V to maintain compatibility with TTL 电源电压标准化为5V左右,以保持与TTL的兼容性
- CMOS began appearing in consumer electronics and industrial equipment CMOS开始出现在消费电子产品和工业设备中
1980s: TTL-Compatible CMOS Logic Families 20世纪80年代:TTL兼容CMOS逻辑系列
- 74HC (High-speed CMOS) series: CMOS technology with TTL pinout compatibility 74HC(高速CMOS)系列:兼容TTL引脚的CMOS技术
- 74HCT series: TTL-compatible input thresholds for mixed systems 74HCT系列:用于混合系统的TTL兼容输入阈值
- Began to challenge TTL's dominance in digital logic 开始挑战TTL在数字逻辑领域的主导地位
1980s-1990s: Advanced CMOS Families 20世纪80年代至90年代:先进的CMOS系列
- 74AC (Advanced CMOS): Faster operation comparable to advanced TTL 74AC(高级CMOS):与高级TTL相比,操作速度更快
- 74ACT: TTL-compatible inputs with advanced CMOS performance 74ACT:TTL兼容输入,具有先进的CMOS性能
- 74FCT, 74ABT, 74LVT: Various specialized CMOS families targeting specific needs 74FCT、74ABT、74LVT:针对特定需求的各种专用CMOS系列
CMOS in Microprocessor Technology
微处理器技术中的CMOS
1970s: Early CMOS Processors 20世纪70年代:早期CMOS处理器
- RCA CDP1802: One of the first CMOS microprocessors (1976) RCA CDP1802:最早的CMOS微处理器之一(1976年)
- Low power consumption made it suitable for space applications 低功耗使其适用于太空应用
1980s: Major Shift to CMOS 20世纪80年代:向CMOS的重大转变
- Intel 80C85 and 80C86: CMOS versions of popular processors 英特尔80C85和80C86:流行处理器的CMOS版本
- CMOS became the dominant technology for microprocessors CMOS成为微处理器的主导技术
- Motorola 68HC11 and similar low-power microcontrollers gained popularity 摩托罗拉68HC11和类似的低功耗微控制器越来越受欢迎
1990s: Universal Adoption 1990年代:普遍采用
- Virtually all new processor designs used CMOS technology
几乎所有新的处理器设计都使用了CMOS技术 - Power efficiency became critical as portable computing emerged 随着便携式计算的出现,电源效率变得至关重要
Manufacturing Evolution 制造业的演变
Process Scaling 流程扩展
- 1970s: 10μm (10,000nm) manufacturing processes
- 1980s: Scaling down to 3-1μm processes
- 1990s: Sub-micron processes (800nm to 350nm)
- 2000s: Deep sub-micron (180nm to 45nm)
- 2010s: Ultra-deep sub-micron (28nm to 7nm)
- 2020s: Extreme ultraviolet lithography enabling 5nm and smaller
20世纪70年代:10μm(10000nm)制造工艺
20世纪80年代:缩减到3-1μm工艺
20世纪90年代:亚微米工艺(800nm至350nm)
2000年代:深亚微米(180nm至45nm)
2010年代:超深亚微米(28nm至7nm)
2020年代:实现5nm及更小尺寸的极紫外光刻
Voltage Scaling 电压调节
- Original CMOS: 5-15V operation
- 1990s: Transition to 3.3V standard
- 2000s: Further reduction to 1.8V, 1.5V, and lower
- Modern: Sub-1V core voltages with multiple voltage domains
- 原始CMOS:5-15V操作
- 20世纪90年代:向3.3V标准过渡
2000年代:进一步降至1.8V、1.5V及以下
现代:具有多个电压域的Sub-1V核心电压
Modern CMOS Technology 现代CMOS技术
Key Innovations: 关键创新:
- FinFET technology (3D transistors) FinFET技术(3D晶体管)
- High-k dielectric materials 高k电介质材料
- Metal gates replacing polysilicon 金属栅极取代多晶硅
- Strained silicon 应变硅
- Multi-patterning lithography 多图案光刻
- Extreme ultraviolet lithography 极紫外光刻
Beyond Traditional CMOS: 超越传统CMOS:
- FDSOI (Fully Depleted Silicon On Insulator) FDSOI(绝缘体上全耗尽硅)
- Gate-all-around (GAA) transistors 全栅极(GAA)晶体管
- Carbon nanotube transistors 碳纳米管晶体管
- Quantum computing elements 量子计算元件
Impact and Legacy 影响和遗产
CMOS technology revolutionized electronics by: CMOS技术通过以下方式彻底改变了电子产品:
- Enabling massive integration (billions of transistors per chip) 实现大规模集成(每个芯片数十亿个晶体管)
- Providing the foundation for Moore's Law to continue for decades 为摩尔定律持续数十年提供基础
- Dramatically reducing power consumption 大幅降低功耗
- Making portable computing practical 使便携式计算实用化
- Supporting the mobile revolution 支持移动革命
- Enabling IoT and edge computing 实现物联网和边缘计算
Today, CMOS remains the dominant technology for digital logic, with ongoing research pushing its physical limits while exploring potential successor technologies. 今天,CMOS仍然是数字逻辑的主导技术,正在进行的研究在探索潜在的后续技术的同时突破了其物理极限。