线性代数学习之坐标转换和线性变换

空间的基和坐标系:

继续接着上一次线性代数学习之正交性,标准正交矩阵和投影往下学习,前面已经详细的学习了什么是空间、什么是向量空间、什么是子空间,在此基础上又知道了对于一个空间来说基是很重要的属性,并且对于一个空间来说其实是有无数组基的,而我们比较感兴趣的通常是正交基和标准正交基,当然这不是所有的情况,在不同的领域中会对不同的基感兴趣,既然一个空间存在这么多种不同的基,就会涉及到空间中的一组基跟另外一组基是怎样变换的,这也是此次所要研究的话题,具体就是要了解坐标转换和线性变换两个概念,而这里先来从坐标转换相关的概念开始了解。

在之前线性代数的学习中,在理解空间的基的一个视角就是坐标系,其实坐标系跟空间的基是一一对应的关系的,当有了一组空间的基时就可以说有了空间的一个坐标系,反过来也成立,举个之前举过的二维空间的例子:

其中在这个坐标系上取一点(12,8),之所以这个点是(12,8)是建立在一个标准坐标上的,标准就包括水平向上和垂直向上的坐标轴以及定义了什么是一个单位,如下:

而红色的两个单位箭头其实就是定义了二维平面的一组基,当然二维平面可以有无数组基,比如这样:

如果定义好了这么一个基的话,可以以这两个基的向量所对应的方向当作二维平面两个轴的方向,而两个向量的模当作是两个方向上的一个单位是多少,这样这组基又定义了这么一个坐标系:

此时这个点的坐标就变成了(2,2)了:

可见同样一个点就对应了两个表示法:

第一组基如果以列排列的话这个点表示的是:

而第二组基也是列排列的话这个点表示的是:

这就是空间的基和坐标系之间的关系,它们是一一对应的,而关于空间的基更严谨的有这么一个结论,之前https://www.cnblogs.com/webor2006/p/14306046.html已经证明过:

在n维空间,如果给定一组基,任何一个向量(或者是点)都可以表示成这组基的线性组合,且表示方法唯一

下面再来对这两种空间对应的坐标系的情况进行一个总结:

所以对于n维空间的一个点或者向量,我们定义为x,那么给定任何一组基都可以表示成这组基的线性组合,且表示方法唯一,所以:

前面的式子是在e1、e2这组基下,后面的式子是在u、v的这组基下,而相应的每一组基都对应着一个坐标系,如下:

发现规律木有,实际上我们说的坐标的值就是把这个向量x表示成这组基所对应的线性组合,相应的线性组合中每一个基向量前面的那个系数,所以就可以给下面的一个定义啦:

如果给定向量空间V中的一组基B,B定义为:

以及V中的一个向量x:则x一定可以被这组基线性表示。假设:

则称x在这组基B下的坐标,为:

而由于不同的坐标对应的是同一个x点,所以为了区分起见,也可以记做:

也就是这一组坐标(c1,c2,...,cn)在大B这组基下相应的坐标,有点晕,回到具体的例子来看:

其中这个符号怎么读的呀:

关于数学符号的读法在网上搜了个表,可以参考一下:

大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Δ δ deta delta 德耳塔
Ε ε epsilon epsilon 艾普西隆
Ζ ζ zeta zeta 截塔
Η η eta eta 艾塔
Θ θ theta θita 西塔
Ι ι iota iota 约塔
Κ κ kappa kappa 卡帕
λ
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

webor2006

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值