第五章 贪心算法

在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。


从贪心算法的定义可以看出,贪心算法不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。

 

活动安排问题 

活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子。
该问题要求高效地安排一系列争用某一公共资源的活动。

 

贪心算法的理论基础 

  • 贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,希望得到结果是最好或最优的算法。
  • 贪心算法是一种能够得到某种度量意义下的最优解的分级处理方法,通过一系列的选择得到一个问题的解,而它所做的每一次选择都是当前状态下某种意义的最好选择。即希望通过问题的局部最优解求出整个问题的最优解。
  • 这种策略是一种很简洁的方法,对许多问题它能产生整体最优解,但不能保证总是有效,因为它不是对所有问题都能得到整体最优解。

 

贪心选择性质

贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。
这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
(1)在动态规划算法中,每步所做的选择往往依赖于相关子问题的解,因而只有在解出相关子问题后,才能做出选择。
(2)在贪心算法中,仅在当前状态下做出最好选择,即局部最优选择,然后再去解出这个选择后产生的相应的子问题。

 

最优子结构性质

  • 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。
  • 运用贪心策略在每一次转化时都取得了最优解。问题的最优子结构性质是该问题可用贪心算法或动态规划算法求解的关键特征。
  • 贪心算法的每一次操作都对结果产生直接影响,而动态规划则不是。
  • 贪心算法对每个子问题的解决方案都做出选择,不能回退;动态规划则会根据以前的选择结果对当前进行选择,有回退功能。
  • 动态规划主要运用于二维或三维问题,而贪心一般是一维问题。

 

背包问题

  • 给定一个载重量为M的背包,考虑n个物品,其中第i个物品的重量 ,价值wi (1≤i≤n),要求把物品装满背包,且使背包内的物品价值最大。
  • 有两类背包问题(根据物品是否可以分割),如果物品不可以分割,称为0—1背包问题(动态规划);如果物品可以分割,则称为背包问题(贪心算法)。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值