牛客题解 | 斐波那契数列

题目

题目链接

#描述
此题是非常经典的入门题了。我记得第一次遇到此题是在课堂上,老师拿来讲“递归”的(哈哈哈)。同样的类型的题还有兔子繁殖的问题。大同小异。此题将用三个方法来解决,从入门到会做。
考察知识:递归,记忆化搜索,动态规划和动态规划的空间优化。
难度:一星

#题解
###方法一:递归
题目分析,斐波那契数列公式为:f[n] = f[n-1] + f[n-2], 初始值f[0]=0, f[1]=1,目标求f[n]
看到公式很亲切,代码秒秒钟写完。

class Solution {
public:
    int Fibonacci(int n) {
        if (n<=2) return 1;
        return Fibonacci(n-1) + Fibonacci(n-2);
    }
};

优点,代码简单好写,缺点:慢,会超时
时间复杂度:O(2^n)
空间复杂度:递归栈的空间
###方法二:记忆化搜索
拿求f[5] 举例
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

通过图会发现,方法一中,存在很多重复计算,因为为了改进,就把计算过的保存下来。
那么用什么保存呢?一般会想到map, 但是此处不用牛刀,此处用数组就好了。

class Solution {
public:
    int f[50]{0};
    int Fibonacci(int n) {
        if (n <= 2) return 1;
        if (f[n] > 0) return f[n];
        return f[n] = (Fibonacci(n-1)+Fibonacci(n-2));
    }
};

时间复杂度:O(n), 没有重复的计算
空间复杂度:O(n)和递归栈的空间

方法三:动态规划

虽然方法二可以解决此题了,但是如果想让空间继续优化,那就用动态规划,优化掉递归栈空间。
方法二是从上往下递归的然后再从下往上回溯的,最后回溯的时候来合并子树从而求得答案。
那么动态规划不同的是,不用递归的过程,直接从子树求得答案。过程是从下往上。

class Solution {
public:
    int dp[50]{0};
    int Fibonacci(int n) {
        dp[1] = 1, dp[2] =1;
        for (int i = 3 ; i <= n ; i ++) dp[i] = dp[i-1]+dp[i-2];
        return dp[n];
    }
};

时间复杂度:O(n)
空间复杂度:O(n)
###继续优化
发现计算f[5]的时候只用到了f[4]和f[3], 没有用到f[2]…f[0],所以保存f[2]…f[0]是浪费了空间。
只需要用3个变量即可。

class Solution {
public:
    int Fibonacci(int n) {
        int a = 1 , b = 1 , c = 1;
        for (int i = 3 ; i <= n ; i ++) {
            c = a+b , a = b , b = c;
        }
        return c;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)
完美!

练习赛142是一场编程竞赛,通常包含多个算法题目,涵盖如数组、字符串、链表、动态规划等常见数据结构与算法知识点。针对这类比赛的解题思路和方法,可以从以下几个方面进行分析: ### 题目类型与解题策略 1. **数组相关问题** - 常见的题目包括查找数组中出现次数超过一半的数字、寻找缺失的数字、求解最大子数组和等。 - 解题方法包括使用哈希表统计频率、摩尔投票法(适用于多数元素问题)、双指针技巧或前缀和优化。 2. **链表操作** - 链表题目可能涉及反转链表、判断链表是否有环、找出两个链表的相交节点等。 - 例如,在找两个链表相交点的问题中,可以先计算各自长度,然后让长链表先走差值步数,再同步遍历比较节点地址[^3]。 3. **字符串处理** - 包括最长回文子串、无重复字符的最长子串等。 - 可采用滑动窗口、动态规划或中心扩展法等策略。 4. **树与图** - 树相关的题目可能涉及二叉树的遍历、路径和、最近公共祖先等问题。 - 图论问题可能需要使用深度优先搜索(DFS)、广度优先搜索(BFS)或拓扑排序等算法。 5. **动态规划** - 动态规划常用于解决背包问题、最长递增子序列、编辑距离等。 - 关键在于定义状态转移方程,并通过迭代或记忆化搜索进行求解。 6. **贪心算法** - 适用于区间调度、活动选择、硬币找零等问题。 - 贪心策略的核心在于每一步都做出局部最优选择。 ### 示例代码:摩尔投票法解决“多数元素”问题 ```python def majorityElement(nums): count = 0 candidate = None for num in nums: if count == 0: candidate = num count += (1 if num == candidate else -1) return candidate ``` 该算法时间复杂度为 O(n),空间复杂度为 O(1),非常适合处理大规模输入的数据集[^2]。 ### 提升解题能力的建议 - **刷题积累经验**:在 LeetCode、Codeforces、AtCoder 等平台上持续练习,熟悉各种题型。 - **学习经典算法**:掌握常见的算法模板,如二分查找、归并排序、快速选择等。 - **阅读官方题解与讨论区**:了解不同解法的优劣,尤其是最优解的时间复杂度分析。 - **模拟比赛训练**:定期参加在线编程比赛,提升实战能力和代码调试速度。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值