【题目】
假设农场中成熟的母牛每年只会生1头小母牛,并且永远不会死。第一年农场有1只成熟的母牛,从第二年开始,母牛开始生小母牛。每只小母牛3年之后成熟又可以生小母牛。给定整数N,求出N年后牛的数量。
【举例】
N=6,第1年1头成熟母牛记为a;
第2年a生了新的小母牛,记为b,总牛数为2;
第3年a生了新的小母牛,记为c,总数为3;
第4年a生了新牛d,总数4;
第5年b成熟了,ab分别生了一只,总数为6;
第6年c也成熟了,abc分别生了一只,总数为9,故返回9.
【代码】
public static void main(String[] args) {
//进阶2
System.out.println(c1(6));//9 (1,2,3,4,6,9)
System.out.println(c2(6));//9
System.out.println(c3(6));//9
}

本文探讨了一个关于牛数量增长的问题:初始有1只母牛,每年生1头小母牛,3年后小母牛成熟。给定年数N,计算N年后牛的总数。例如,当N=6时,第6年共有9头牛。文章通过递归和动态规划的方法解决此问题。
最低0.47元/天 解锁文章
1402

被折叠的 条评论
为什么被折叠?



