【Python/Pytorch - 网络模型】-- 手把手搭建GAN网络

在这里插入图片描述

文章目录

00 写在前面

GAN网络的生成器主要通过U-Net网络结构

01 基于Pytorch版本的GAN代码

import torch
import torch.nn as nn
from network.ops import TotalVariation

class conv_block(nn.Module):
    def __init__(self,ch_in,ch_out):
        super(conv_block,self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(ch_in, ch_out, kernel_size=3,stride=1,padding=1,bias=True),
            #nn.BatchNorm2d(ch_out),
            nn.ReLU(inplace=True),
            nn.Conv2d(ch_out, ch_out, kernel_size=3,stride=1,padding=1,bias=True),
            #nn.BatchNorm2d(ch_out),
            nn.ReLU(inplace=True)
        )

    def forward(self,x):
        x = self.conv(x)
        return x

class up_conv(nn.Module):
    def __init__(self,ch_in,ch_out):
        super(up_conv,self).__init__()
        self.up = nn.Sequential(
            nn.Upsample(scale_factor=2),
            nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=1,padding=1,bias=True),
		    #nn.BatchNorm2d(ch_out),
			nn.ReLU(inplace=True)
        )

    def forward(self,x):
        x = self.up(x)
        return x

class outconv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(outconv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1),
            #nn.ReLU(inplace=True),
        )
    def forward(self, x):
        x = self.conv(x)
        return x


class Generator(nn.Module):
    def __init__(self, img_ch=2, output_ch=1,filter_dim=64):
        super(Generator, self).__init__()

        self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2)

        self.Conv1 = conv_block(ch_in=img_ch, ch_out=filter_dim)
        self.Conv2 = conv_block(ch_in=64, ch_out=128)
        self.Conv3 = conv_block(ch_in=128, ch_out=256)
        self.Conv4 = conv_block(ch_in=256, ch_out=512)
        self.Conv5 = conv_block(ch_in=512, ch_out=1024)

        self.Up5 = up_conv(ch_in=1024, ch_out=512)
        self.Up_conv5 = conv_block(ch_in=1024, ch_out=512)

        self.Up4 = up_conv(ch_in=512, ch_out=256)
        self.Up_conv4 = conv_block(ch_in=512, ch_out=256)

        self.Up3 = up_conv(ch_in=256, ch_out=128)
        self.Up_conv3 = conv_block(ch_in=256, ch_out=128)

        self.Up2 = up_conv(ch_in=128, ch_out=64)
        self.Up_conv2 = conv_block(ch_in=128, ch_out=64)

        self.Conv11 = outconv(64, output_ch)

    def forward(self, x):
        # encoding path
        x1 = self.Conv1(x)

        x2 = self.Maxpool(x1)
        x2 = self.Conv2(x2)

        x3 = self.Maxpool(x2)
        x3 = self.Conv3(x3)

        x4 = self.Maxpool(x3)
        x4 = self.Conv4(x4)

        x5 = self.Maxpool(x4)
        x5 = self.Conv5(x5)

        # decoding + concat path
        d5 = self.Up5(x5)
        d5 = torch.cat((x4, d5), dim=1)
        d5 = self.Up_conv5(d5)

        d4 = self.Up4(d5)
        d4 = torch.cat((x3, d4), dim=1)
        d4 = self.Up_conv4(d4)

        d3 = self.Up3(d4)
        d3 = torch.cat((x2, d3), dim=1)
        d3 = self.Up_conv3(d3)

        d2 = self.Up2(d3)
        d2 = torch.cat((x1, d2), dim=1)
        d2 = self.Up_conv2(d2)

        T2 = self.Conv11(d2)

        return T2

class Discriminator(nn.Module):
    def __init__(self, input_shape):
        super(Discriminator, self).__init__()

        self.input_shape = input_shape
        in_channels, in_height, in_width = self.input_shape
        patch_h, patch_w = int(in_height / 2 ** 4), int(in_width / 2 ** 4)
        self.output_shape = (1, patch_h, patch_w)

        def discriminator_block(in_filters, out_filters, first_block=False, normalize=True):
            layers = []
            layers.append(nn.Conv2d(in_filters, out_filters, kernel_size=3, stride=1, padding=1))
            if not first_block and normalize:
                layers.append(nn.BatchNorm2d(out_filters))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            layers.append(nn.Conv2d(out_filters, out_filters, kernel_size=3, stride=2, padding=1))
            if normalize:
                layers.append(nn.BatchNorm2d(out_filters))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        layers = []
        in_filters = in_channels
        for i, out_filters in enumerate([64, 128, 256, 512]):
            layers.extend(discriminator_block(in_filters, out_filters, first_block=(i == 0)))
            in_filters = out_filters

        layers.append(nn.Conv2d(out_filters, 1, kernel_size=3, stride=1, padding=1))

        self.model = nn.Sequential(*layers)

    def forward(self, img):
        return self.model(img)

02 论文下载

Generative Adversarial Networks

03 GAN网络的数学推导

在这里插入图片描述

04 交叉损失函数理解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

05 GAN网络损失函数理解

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电科_银尘

你的鼓励将是我最大的创作动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值