前言
等差数列的前 n n n项和公式的推导方法,就是倒序相加求和法。
适用范围
①等差数列;
②更多的体现为对函数性质的考查,尤其是关于中心对称的函数,自然有对称性的数列的求和也可以;
典例剖析
【函数性质的应用】定义在 R R R上的函数满足 f ( 1 2 + x ) + f ( 1 2 − x ) = 2 f(\cfrac{1}{2}+x)+f(\cfrac{1}{2}-x)=2 f(21+x)+f(21−x)=2
求值: S = f ( 1 8 ) + f ( 2 8 ) + f ( 3 8 ) + ⋯ + f ( 7 8 ) S=f(\cfrac{1}{8})+f(\cfrac{2}{8})+f(\cfrac{3}{8})+\cdots+f(\cfrac{7}{8}) S=f(81)+f(82)+f(83)+⋯+f(87).
S = f ( 1 8 ) + f ( 2 8 ) + f ( 3 8 ) + ⋯ + f ( 7 8 ) ① S=f(\cfrac{1}{8})+f(\cfrac{2}{8})+f(\cfrac{3}{8})+\cdots+f(\cfrac{7}{8})① S=f(81)+f(82)+f(83)+⋯+f(87)①.
S = f ( 7 8 ) + f ( 6 8 ) + f ( 5 8 ) + ⋯ + f ( 1 8 ) ② S=f(\cfrac{7}{8})+f(\cfrac{6}{8})+f(\cfrac{5}{8})+\cdots+f(\cfrac{1}{8})② S=f(87)+f(86)+f(85)+⋯+f(81)②.
相加,求和得到 S = 7 S=7 S=7.
【函数性质的应用】求值: S = s i n 2 1 ∘ + s i n 2 2 ∘ + s i n 2 3 ∘ + ⋯ + s i n 2 8 8 ∘ + s i n 2 8 9 ∘ S=sin^21^{\circ}+sin^22^{\circ}+sin^23^{\circ}+\cdots+sin^288^{\circ}+sin^289^{\circ} S=sin21∘+sin22∘+sin23∘+⋯+sin288∘+sin289∘
法1: s i n 2 1 ∘ + s i n 2 8 9 ∘ = 1 sin^21^{\circ}+sin^289^{\circ}=1 sin21∘+sin289∘=1, s i n 2 2 ∘ + s i n 2 8 8 ∘ = 1 sin^22^{\circ}+sin^288^{\circ}=1 sin22∘+sin288∘=1, ⋯ \cdots ⋯, s i n 2 4 4 ∘ + s i n 2 4 6 ∘ = 1 sin^244^{\circ}+sin^246^{\circ}=1 sin244∘+sin246∘=1, s i n 2 4 5 ∘ = 1 2 sin^245^{\circ}=\cfrac{1}{2} sin245∘=21,
故原式 S = 44 + 1 2 = 44.5 S=44+\cfrac{1}{2}=44.5 S=44+21=44.5。
法2: S = s i n 2 1 ∘ + s i n 2 2 ∘ + s i n 2 3 ∘ + ⋯ + s i n 2 8 8 ∘ + s i n 2 8 9 ∘ S=sin^21^{\circ}+sin^22^{\circ}+sin^23^{\circ}+\cdots+sin^288^{\circ}+sin^289^{\circ} S=sin21∘+sin22∘+sin23∘+⋯+sin288∘+sin289∘①,
则有 S = s i n 2 8 9 ∘ + s i n 2 8 8 ∘ + s i n 2 8 7 ∘ + ⋯ + s i n 2 2 ∘ + s i n 2 1 ∘ S=sin^289^{\circ}+sin^288^{\circ}+sin^287^{\circ}+\cdots+sin^22^{\circ}+sin^21^{\circ} S=sin289∘+sin288∘+sin287∘+⋯+sin22∘+sin21∘,
即有 S = c o s 2 1 ∘ + c o s 2 2 ∘ + c o s 2 3 ∘ + ⋯ + c o s 2 8 8 ∘ + c o s 2 8 9 ∘ S=cos^21^{\circ}+cos^22^{\circ}+cos^23^{\circ}+\cdots+cos^288^{\circ}+cos^289^{\circ} S=cos21