GCN(二)GCN模型介绍

本文介绍了如何使用PyTorch实现GCN模型,详细步骤包括初始化模型、构建两层GraphConvolution层、前向传播过程,以及在Cora数据集上进行训练,展示了GCN用于节点分类的实际操作。
部署运行你感兴趣的模型镜像

上一节介绍了处理cora数据集,以及返回的结果:

  • features:论文的属性特征,维度2708×14332708 \times 14332708×1433,并且做了归一化,即每一篇论文属性值的和为1.
  • labels:每一篇论文对应的分类编号:0-6
  • adj:邻接矩阵,维度2708×27082708 \times 27082708×2708
  • idx_train:0-139
  • idx_val:200-499
  • idx_test:500-1499

这一节介绍GCN的模型。

GCN 模型

model:

import torch.nn as nn
import torch.nn.functional as F
from pygcn.layers import GraphConvolution


class GCN(nn.Module):
    def __init__(self, nfeat, nhid, nclass, dropout):
        super(GCN, self).__init__()

        self.gc1 = GraphConvolution(nfeat, nhid)  # 构建第一层 GCN
        self.gc2 = GraphConvolution(nhid, nclass)  # 构建第二层 GCN
        self.dropout = dropout

    def forward(self, x, adj):
        x = F.relu(self.gc1(x, adj))
        x = F.dropout(x, self.dropout, training=self.training)
        x = self.gc2(x, adj)
        return F.log_softmax(x, dim=1)

layers:

import math

import torch

from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module


class GraphConvolution(Module):
    """
    Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
    """

    def __init__(self, in_features, out_features, bias=True):
        super(GraphConvolution, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.FloatTensor(in_features, out_features))  # input_features, out_features
        if bias:
            self.bias = Parameter(torch.FloatTensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)  # 随机化参数
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, input, adj):
        support = torch.mm(input, self.weight)  # GraphConvolution forward。input*weight
        output = torch.spmm(adj, support)  # 稀疏矩阵的相乘,和mm一样的效果
        if self.bias is not None:
            return output + self.bias
        else:
            return output

    def __repr__(self):
        return self.__class__.__name__ + ' (' \
               + str(self.in_features) + ' -> ' \
               + str(self.out_features) + ')'

初始化模型

调用模型:

model = GCN(nfeat=features.shape[1],
            nhid=args.hidden,
            nclass=labels.max().item() + 1,
            dropout=args.dropout)

具体参数:

model = GCN(nfeat=1433,
            nhid=16,
            nclass=7,
            dropout=0.5)

初始化模型两层GCN:

self.gc1 = GraphConvolution(nfeat=1433, nhid=16)  # 构建第一层 GCN
self.gc2 = GraphConvolution(nhid=16, nclass=7)  # 构建第二层 GCN
self.dropout = 0.5

初始化具体layer:
第一层:gc1

def __init__(self, in_features, out_features, bias=True):
    super(GraphConvolution, self).__init__()
    self.in_features = 1433
    self.out_features = 16
    self.weight = Parameter(torch.FloatTensor(1433, 16))  # input_features, out_features
	self.bias = Parameter(torch.FloatTensor(16))
    self.reset_parameters() # 初始化w和b

参数www的维度:W1433×16W_{1433 \times 16}W1433×16
参数bbb的维度:b1×16b_{1 \times 16}b1×16
第二层:gc2

def __init__(self, in_features, out_features, bias=True):
    super(GraphConvolution, self).__init__()
    self.in_features = 16
    self.out_features = 7
    self.weight = Parameter(torch.FloatTensor(16, 7))  # input_features, out_features
	self.bias = Parameter(torch.FloatTensor(7))
    self.reset_parameters() # 初始化w和b

参数www的维度:W1433×16W_{1433 \times 16}W1433×16
参数bbb的维度: b1×7b_{1 \times 7}b1×7

forward执行模型

  1. 首先执行model:
def forward(self, x, adj):
    x = F.relu(self.gc1(x, adj))
    x = F.dropout(x, self.dropout, training=self.training)
    x = self.gc2(x, adj)
    return F.log_softmax(x, dim=1)
  1. 执行self.gc1(x, adj)x表示输入特征,维度2708×14332708 \times 14332708×1433adj表示邻接矩阵,维度2708×27082708 \times 27082708×2708

  2. 执行GCN layer gc1层,

        support = torch.mm(input, self.weight)  # GraphConvolution forward。input*weight
        output = torch.spmm(adj, support)

计算output,output2708×16=adj2708×2708×input2708×1433×W1433×16output_{2708 \times 16} = adj_{2708 \times 2708} \times input_{2708 \times 1433} \times W_{1433 \times 16}output2708×16=adj2708×2708×input2708×1433×W1433×16,然后返回output=output2708×16+bias1×16output = output_{2708 \times 16} + bias_{1 \times 16}output=output2708×16+bias1×16

output[0]=
tensor([ 0.0201, -0.0242,  0.0608,  0.0272,  0.0133,  0.0085,  0.0084, -0.0265,
         0.0149, -0.0100,  0.0077,  0.0029,  0.0145, -0.0181, -0.0021, -0.0183],
       grad_fn=<SelectBackward>)
self.bias=
Parameter containing:
tensor([-0.2232, -0.0295, -0.1387,  0.2170, -0.1749, -0.1551,  0.1056, -0.1860,
        -0.0666, -0.1327,  0.0212,  0.1587,  0.2496, -0.0154, -0.1683,  0.0151],
       requires_grad=True)
(output + self.bias)[0]=
tensor([-0.2030, -0.0537, -0.0779,  0.2442, -0.1616, -0.1466,  0.1140, -0.2125,
        -0.0516, -0.1427,  0.0289,  0.1615,  0.2641, -0.0336, -0.1704, -0.0032],
       grad_fn=<SelectBackward>)
  1. 使用ReluReluRelu激活函数,
x = F.relu(self.gc1(x, adj))
x[0]=
tensor([0.0000, 0.0000, 0.0000, 0.2442, 0.0000, 0.0000, 0.1140, 0.0000, 0.0000,
       0.0000, 0.0289, 0.1615, 0.2641, 0.0000, 0.0000, 0.0000],
      grad_fn=<SelectBackward>)
  1. 在training阶段,使用dropoutdropoutdropout, 执行x=x1−0.5x=\frac{x}{1-0.5}x=10.5x,并以0.5的概率去除:
x = F.dropout(x, self.dropout, training=self.training)
x[0]=
tensor([0.0000, 0.0000, 0.0000, 0.4884, 0.0000, 0.0000, 0.2280, 0.0000, 0.0000,
        0.0000, 0.0000, 0.3230, 0.5282, 0.0000, 0.0000, 0.0000],
       grad_fn=<SelectBackward>)
  1. 执行第二层 gc2
        support = torch.mm(input, self.weight)  # GraphConvolution forward。input*weight
        output = torch.spmm(adj, support)

计算output,output2708×7=adj2708×2708×input2708×16×W16×7output_{2708 \times 7} = adj_{2708 \times 2708} \times input_{2708 \times 16} \times W_{16 \times 7}output2708×7=adj2708×2708×input2708×16×W16×7,然后返回output=output2708×7+bias1×7output = output_{2708 \times 7} + bias_{1 \times 7}output=output2708×7+bias1×7

output[0]=
tensor([-0.1928,  0.1723,  0.1689, -0.0516,  0.0387, -0.0276, -0.1027],
       grad_fn=<SelectBackward>)
  1. 将返回结果x,直接吐给F.log_softmax(x,dim=1)F.log\_softmax(x, dim=1)F.log_softmax(x,dim=1)dim=1dim=1dim=1表示对7维度进行log_softmax
x[0]=
tensor([-2.1474, -1.7823, -1.7856, -2.0062, -1.9158, -1.9822, -2.0573],
       grad_fn=<SelectBackward>)
  1. 将output与label进行计算loss 与 acc_train
    loss=tensor(1.9186, grad_fn=<NllLossBackward>) acc_train=tensor(0.1357, dtype=torch.float64)
  2. 最后进行反向传播,更新梯度W和b
  3. 完成一次train的过程

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值