scipy.optimize注意constraints

求解带有等式约束的最优化问题,遇到了

Optimization terminated successfully.    (Exit mode 0)

参考了问题https://stackoverflow.com/questions/37791680/scipy-optimize-minimize-slsqp-with-linear-constraints-fails,找到了原因是constraints写得有误。例子如下

import numpy as np
from scipy.optimize import minimize

# problem dimensions:
n = 10 # arbitrary integer set by user
m = 2 * n

# generate parameters A, b:
np.random.seed(123) # for reproducibility of results
A = np.random.randn(m,n)
b = np.random.randn(m)
z0 = np.random.randn(n+m)
# objective function:
def obj(z):
    vy = z[n:]
    return 0.5 * vy.dot(vy)

def cons_i(z, i):
    vx = z[:n]
    vy = z[n:]
    return A[i].dot(vx) - b[i] - vy[i]

# listable of scalar-output constraints input for SLSQP:
cons_per_i_one = [{'type':'eq', 'fun': lambda z: cons_i(z, i)} for i in np.arange(m)]  #这种就不行
cons_per_i = [{'type':'eq', 'fun': cons_i, 'args': (i,)} for i in np.arange(m)]  # 下面这种就可以

sol2 = minimize(obj, x0 = z0, constraints = cons_per_i, method = 'SLSQP', options={'disp': True})

还没具体看为什么会有这个问题,但把这里bug记录下 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值