20150708 lintcode 总结 Minimum Path Sum

部署运行你感兴趣的模型镜像
Easy Minimum Path Sum
34%
Accepted

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path. You can only move either down or right at any point in time.

虽然是简单的题,感觉也不简单

Time complexity: O(m*n); Space complexity: O(m*n)

public class Solution {
    /**
     * @param grid: a list of lists of integers.
     * @return: An integer, minimizes the sum of all numbers along its path
     */
    public int minPathSum(int[][] grid) {
        // write your code here
        if (grid == null || grid.length == 0 || grid[0].length == 0) {
            return 0;
        }
        int m = grid.length;
        int n = grid[0].length;
        int[][] temp = new int[m][n];
        
        for(int i = 0; i<m ; i++){      	
        	for(int j = 0; j<n; j++){
        		if(i==0 && j==0){
        			temp[0][0] = grid[0][0];
        		}else if(i==0){
            		temp[0][j] = temp[0][j-1] + grid[i][j];
            	}else if(j==0){
            		temp[i][0] = temp[i-1][0] + grid[i][j];
            	}else{
            	    temp[i][j] = Math.min(temp[i-1][j], temp[i][j-1]) + grid[i][j];
            	}      		
    	   }
       }
        
<span style="white-space:pre">	</span>return temp[m-1][n-1];
    }
}

方法2:time complexity: O(m*n); space complexity: O(n)

public class Solution {
    /**
     * @param grid: a list of lists of integers.
     * @return: An integer, minimizes the sum of all numbers along its path
     */
    public int minPathSum(int[][] grid) {
        // write your code here
    	if (grid == null || grid.length == 0 || grid[0].length == 0) {
            return 0;
        }
    	int m = grid.length;
        int n = grid[0].length;
        int[] temp = new int[n];
        
        for(int i = 0; i<m; i++){     
        	for(int j = 0; j<n; j++){
        		if(i == 0 && j == 0 ){
        			temp[0] = grid[0][0];
        		}else if(i == 0 ){
        			temp[j] = temp[j-1] + grid[0][j];
        		}else if(j == 0 ){
        			temp[0] = temp[0] + grid[i][0];
        		}else{
        			temp[j] = Math.min(temp[j], temp[j-1]) + grid[i][j];
        		}	
        	}       		
       }      
        return temp[n-1];
    }
}


您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值