Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
You can only move either down or right at any point in time.
Solution 1. Recursion, DFS
1 public class Solution { 2 private int minPath = Integer.MAX_VALUE; 3 public int minPathSum(int[][] grid) { 4 if(grid == null || grid.length == 0 || grid[0].length == 0){ 5 return -1; 6 } 7 traverse(grid, 0, 0, 0); 8 return minPath; 9 } 10 private void traverse(int[][] grid, int x, int y, int sum){ 11 int m = grid.length, n = grid[0].length; 12 if(x >= m || y >= n) { 13 return; 14 } 15 sum += grid[x][y]; 16 if(x == m - 1 && y == n - 1){ 17 if(sum < minPath){ 18 minPath = sum; 19 } 20 return; 21 } 22 traverse(grid, x + 1, y, sum); 23 traverse(grid, x, y + 1, sum); 24 } 25 }
Solution 2. DFS, divide and conquer + memoization
1 public class Solution { 2 private int[][] hash; 3 public int minPathSum(int[][] grid) { 4 if(grid == null || grid.length == 0 || grid[0].length == 0){ 5 return -1; 6 } 7 hash = new int[grid.length][grid[0].length]; 8 for(int i = 0; i < hash.length; i++){ 9 for(int j = 0; j < hash[0].length; j++){ 10 hash[i][j] = Integer.MAX_VALUE; 11 } 12 } 13 return divideConquer(grid, 0, 0); 14 } 15 private int divideConquer(int[][] grid, int x, int y){ 16 int m = grid.length, n = grid[0].length; 17 if(x == m - 1 && y == n - 1){ 18 return grid[x][y]; 19 } 20 if(x >= m || y >= n){ 21 return Integer.MAX_VALUE; 22 } 23 if(hash[x][y] != Integer.MAX_VALUE){ 24 return hash[x][y]; 25 } 26 hash[x][y] = grid[x][y] + Math.min(divideConquer(grid, x, y + 1), divideConquer(grid, x + 1, y)); 27 return hash[x][y]; 28 } 29 }
Solution 3. Dynamic Programming
State: f[i][j], the min distance from (0, 0) to (i, j)
Function: f[i][j] = grid[i][j] + Math.min(f[i - 1][j], f[i][j - 1])
Initialization: f[i][0] = grid[i][0] + f[i - 1][0]; f[0][j] = grid[0][j] + f[0][j - 1]
Answer: f[m - 1][n - 1]
1 public class Solution { 2 public int minPathSum(int[][] grid) { 3 if(grid == null || grid.length == 0 || grid[0].length == 0){ 4 return -1; 5 } 6 int rowLen = grid.length, colLen = grid[0].length; 7 int[][] f = new int[rowLen][colLen]; 8 f[0][0] = grid[0][0]; 9 for(int row = 1; row < rowLen; row++){ 10 f[row][0] = grid[row][0] + f[row - 1][0]; 11 } 12 for(int col = 1; col < colLen; col++){ 13 f[0][col] = grid[0][col] + f[0][col - 1]; 14 } 15 for(int i = 1; i < rowLen; i++){ 16 for(int j = 1; j < colLen; j++){ 17 f[i][j] = grid[i][j] + Math.min(f[i][j - 1], f[i - 1][j]); 18 } 19 } 20 return f[rowLen - 1][colLen - 1]; 21 } 22 }
Solution 4. DP with space optimization
1 public class Solution { 2 public int minPathSum(int[][] grid) { 3 if(grid == null || grid.length == 0 || grid[0].length == 0){ 4 return -1; 5 } 6 int rowLen = grid.length, colLen = grid[0].length; 7 int[][] T = new int[2][colLen]; 8 T[0][0] = grid[0][0]; 9 for(int j = 1; j < colLen; j++){ 10 T[0][j] = T[0][j - 1] + grid[0][j]; 11 } 12 for(int i = 1; i < rowLen; i++){ 13 T[i % 2][0] = T[(i - 1) % 2][0] + grid[i][0]; 14 for(int j = 1; j < colLen; j++){ 15 T[i % 2][j] = grid[i][j] + Math.min(T[(i - 1) % 2][j], T[i % 2][j - 1]); 16 } 17 } 18 return T[(rowLen - 1) % 2][colLen - 1]; 19 } 20 }
Related Problems
Triangle
Binary Tree Maximum Path Sum
本文探讨了解决网格中从左上角到右下角的最小路径和问题的多种算法,包括递归DFS、带记忆化DFS、动态规划及空间优化DP方法,并附有详细代码实现。
417

被折叠的 条评论
为什么被折叠?



