[LintCode] Minimum Path Sum

本文探讨了解决网格中从左上角到右下角的最小路径和问题的多种算法,包括递归DFS、带记忆化DFS、动态规划及空间优化DP方法,并附有详细代码实现。

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

You can only move either down or right at any point in time.

 

Solution 1. Recursion, DFS 

 1 public class Solution {
 2     private int minPath = Integer.MAX_VALUE;
 3     public int minPathSum(int[][] grid) {
 4         if(grid == null || grid.length == 0 || grid[0].length == 0){
 5             return -1;
 6         }
 7         traverse(grid, 0, 0, 0);
 8         return minPath;
 9     }
10     private void traverse(int[][] grid, int x, int y, int sum){
11         int m = grid.length, n = grid[0].length;
12         if(x >= m || y >= n) {
13             return;
14         }
15         sum += grid[x][y];
16         if(x == m - 1 && y == n - 1){
17             if(sum < minPath){
18                 minPath = sum;
19             }
20             return;
21         }
22         traverse(grid, x + 1, y, sum);  
23         traverse(grid, x, y + 1, sum); 
24     }
25 }

 

Solution 2. DFS, divide and conquer + memoization

 1 public class Solution {
 2     private int[][] hash;
 3     public int minPathSum(int[][] grid) {
 4         if(grid == null || grid.length == 0 || grid[0].length == 0){
 5             return -1;
 6         }
 7         hash = new int[grid.length][grid[0].length];
 8         for(int i = 0; i < hash.length; i++){
 9             for(int j = 0; j < hash[0].length; j++){
10                 hash[i][j] = Integer.MAX_VALUE;
11             }
12         }
13         return divideConquer(grid, 0, 0);
14     }
15     private int divideConquer(int[][] grid, int x, int y){
16         int m = grid.length, n = grid[0].length;
17         if(x == m - 1 && y == n - 1){
18             return grid[x][y];
19         }
20         if(x >= m || y >= n){
21             return Integer.MAX_VALUE;
22         }
23         if(hash[x][y] != Integer.MAX_VALUE){
24             return hash[x][y];
25         }
26         hash[x][y] = grid[x][y] + Math.min(divideConquer(grid, x, y + 1), divideConquer(grid, x + 1, y));
27         return hash[x][y];
28     }
29 }

 

Solution 3.  Dynamic Programming 

State: f[i][j],  the min distance from (0, 0) to (i, j)

Function: f[i][j] = grid[i][j] + Math.min(f[i - 1][j], f[i][j - 1])

Initialization: f[i][0] = grid[i][0] + f[i - 1][0]; f[0][j] = grid[0][j] + f[0][j - 1]

Answer: f[m - 1][n - 1]

 

 1 public class Solution {
 2     public int minPathSum(int[][] grid) {
 3         if(grid == null || grid.length == 0 || grid[0].length == 0){
 4             return -1;
 5         }
 6         int rowLen = grid.length, colLen = grid[0].length;
 7         int[][] f = new int[rowLen][colLen];
 8         f[0][0] = grid[0][0];
 9         for(int row = 1; row < rowLen; row++){
10             f[row][0] = grid[row][0] + f[row - 1][0]; 
11         }
12         for(int col = 1; col < colLen; col++){
13             f[0][col] = grid[0][col] + f[0][col - 1];
14         }
15         for(int i = 1; i < rowLen; i++){
16             for(int j = 1; j < colLen; j++){
17                 f[i][j] = grid[i][j] + Math.min(f[i][j - 1], f[i - 1][j]);
18             }
19         }
20         return f[rowLen - 1][colLen - 1];
21     }
22 }

 

Solution 4. DP with space optimization

 

 1 public class Solution {
 2     public int minPathSum(int[][] grid) {
 3         if(grid == null || grid.length == 0 || grid[0].length == 0){
 4             return -1;
 5         }
 6         int rowLen = grid.length, colLen = grid[0].length;
 7         int[][] T = new int[2][colLen];
 8         T[0][0] = grid[0][0];
 9         for(int j = 1; j < colLen; j++){
10             T[0][j] = T[0][j - 1] + grid[0][j];
11         }
12         for(int i = 1; i < rowLen; i++){
13             T[i % 2][0] = T[(i - 1) % 2][0] + grid[i][0];
14             for(int j = 1; j < colLen; j++){
15                 T[i % 2][j] = grid[i][j] + Math.min(T[(i - 1) % 2][j], T[i % 2][j - 1]);
16             }
17         }
18         return T[(rowLen - 1) % 2][colLen - 1];
19     }
20 }

 

 

 

Related Problems

Triangle 

Binary Tree Maximum Path Sum 

转载于:https://www.cnblogs.com/lz87/p/7498455.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值