Maximum Subarray III

解决LintCode上的最大子数组和III问题,通过动态规划的方法找到k个非重叠子数组的最大和。文章详细介绍了如何使用二维数组globalMax来保存中间结果,并通过递推公式更新这些结果。

Given an array of integers and a number k, find k non-overlapping subarrays which have the largest sum.

The number in each subarray should be contiguous.

Example

Given [-1,4,-2,3,-2,3]k=2, return 8

lintcode网址:http://www.lintcode.com/en/problem/maximum-subarray-iii/



非常难,看了好几个答案都看不懂,最后看到这篇才有了思路,但是代码好像有地方不太对,但是大致了解了按照动规的步骤来就出来了。 必须得写一篇记录一下。

http://hehejun.blogspot.com/2015/01/lintcodemaximum-subarray-iii.html


最重要的思路:

维护一个 globalMax [ k+1 ] [ len+1 ] 的矩阵, globalMax [ i ] [ j ]  代表了前 j 个数中取 i 个 subarray 得到的最大和, 注意这里第 j 个数不一定被包括。

一个 int 类型: localMax, 每次写第 globalMax 的 第 i 行 第 j 列时用到的, 记录前 j 个数中取 i 个 subarray 得到的最大和, 但包括第 j 个数。

... ...

... globalMax [ i-1 ] [ j-1 ] | globalMax [ i-1 ] [ j ]

... globalMax [ i ] [ j-1 ] | globalMax [ i ] [ j ]

... ...


成为 globalMax [ i ] [ j ] 的 candidates:

1. 第 j 个数没有被包括:globalMax [ i ] [ j-1 ]

2. 第 j 个数被包括:

2a. 第 j 个数单独做一个 subarray: globalMax[ i - 1 ] [ j-1 ] + nums.get( j-1 )

2b. 第 j 个数并入之前的subarray:localMax' + nums.get( j-1 )


哦了,上代码,代码没多少, 注释很多。


// DP
// globalMax[i][j]:max sum of i subarrays from the first j elements, jth element may not be included
// localMax: max sum of i subarrays from the first j elements, jth element included

// transfer function:
// localMax = Max(sum(jth element merged in the last subarray), sum(jth element alone is a subarray))
// localMax = Max(localMax' + nums.get(j-1), globalMax[i-1][j-1]+nums.get(j-1))


// globalMax = Max(jth element is not include, jth element is included)
// globalMax = Max(globalMax[i][j-1], localMax)

public class Solution {
    /**
     * @param nums: A list of integers
     * @param k: An integer denote to find k non-overlapping subarrays
     * @return: An integer denote the sum of max k non-overlapping subarrays
     */
    public int maxSubArray(ArrayList<Integer> nums, int k) {
        // write your code
        if(nums == null || k == 0){return 0;}
        int len = nums.size();
        if(len < k){return 0;}


        // globalMax[i][j]:max sum of i subarrays from the first j elements 
        // the last element nums[j-1] may not be included
        int [][] globalMax = new int[k+1][len+1];

        // initialize first row to 0s, because selecting 0 subarrays
        for(int i = 0; i <= len; i++){
            globalMax[0][i] = 0;
        }

        // initialize globalMax[i][i] = SUM_nums[0~i-1], i.e. first i elements
        for(int i = 1; i <= k; i++){
            int sum = 0;
            for(int j = 0; j < i; j++){
                sum += nums.get(j);                              
            }
            globalMax[i][i] = sum;
        }


        for(int i = 1; i <=k; i++){
            // localMax is the max sum of i subarrays from the first j elements
            // but the last element must be included
            // initialize localMax as i-1 subarrays + nums.get(i-1) as a the last subarray  
            int localMax = globalMax[i][i];

            for(int j = i+1; j <= len; j++){

                localMax = Math.max(localMax+nums.get(j-1), globalMax[i-1][j-1]+nums.get(j-1));       
                globalMax[i][j] = Math.max(globalMax[i][j-1], localMax);
              
            }

        }

        return globalMax[k][len];
    }
}










### 最大子数组和算法实现与解释 最大子数组和问题旨在从一个整数数组中找出具有最大和的连续子数组。该问题的经典解法采用动态规划思想,其核心逻辑在于逐个位置计算以当前元素结尾的最大子数组和,并记录全局最大值。 动态规划状态转移方程如下: `maxSubArray(A, i) = maxSubArray(A, i - 1) > 0 ? maxSubArray(A, i - 1) : 0 + A[i]` 该公式表示如果前一个位置的最大子数组和大于零,则将其加入当前位置的数值形成新的候选值;否则仅保留当前位置的数值作为起始点。通过这种方式,可以在线性时间内完成整个数组的遍历并求出最大子数组和[^1]。 #### Java 实现示例 ```java class Solution { public int maxSubArray(int[] A) { int n = A.length; int[] dp = new int[n]; // dp[i] 表示以 A[i] 结尾的最大子数组和 dp[0] = A[0]; int max = dp[0]; for (int i = 1; i < n; i++) { dp[i] = A[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0); max = Math.max(max, dp[i]); } return max; } } ``` 上述代码使用了一个长度为 `n` 的数组 `dp` 来存储每个位置上的最大子数组和,最终返回全局最大值 `max`。该方法的时间复杂度为 O(n),空间复杂度也为 O(n)。 为了进一步优化空间复杂度,可以仅维护前一个状态的值,从而将空间复杂度降低至 O(1): #### 空间优化版本(O(1)) ```java class Solution { public int maxSubArray(int[] nums) { if (nums == null || nums.length == 0) { return 0; } int prev = nums[0]; int result = prev; for (int i = 1; i < nums.length; ++i) { prev = Math.max(nums[i], prev + nums[i]); result = Math.max(result, prev); } return result; } } ``` 在该实现中,变量 `prev` 记录以当前元素结尾的最大子数组和,而 `result` 跟踪整个过程中的最大值。这样避免了额外数组的使用,使空间效率更优[^2]。 --- ### 相关应用场景 该算法不仅适用于最大子数组问题本身,还可推广至股票买卖利润最大化等场景。例如,在给定每日股价数组中寻找最大收益时,可以通过构造价格差分数组并应用最大子数组和算法来解决[^3]。 --- ### 示例:C++ 实现(异常安全与空间优化) 以下是一个 C++ 版本的实现,结合了内存管理优化和异常处理机制,确保程序在面对大规模输入时具备更好的鲁棒性: ```cpp #include <iostream> #include <vector> #include <algorithm> int maxSubArraySum(const std::vector<int>& nums) { if (nums.empty()) return 0; int prev = nums[0]; int result = prev; for (size_t i = 1; i < nums.size(); ++i) { prev = std::max(nums[i], prev + nums[i]); result = std::max(result, prev); } return result; } int main() { try { std::vector<int> nums; nums.reserve(1 << 20); // 预留百万级元素的空间 for (int i = 0; i < 1000000; ++i) { nums.push_back(i % 100 - 50); // [-50, 49] } int maxSum = maxSubArraySum(nums); std::cout << "Maximum subarray sum: " << maxSum << std::endl; } catch (const std::bad_alloc& e) { std::cerr << "Memory allocation failed: " << e.what() << std::endl; } catch (...) { std::cerr << "An unexpected error occurred." << std::endl; } return 0; } ``` 此实现通过 `reserve()` 提前分配足够容量,减少频繁扩容带来的性能开销,并通过 `try-catch` 捕获可能的内存分配异常,提高程序稳定性[^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值