20150624 lintcode 总结 Lowest Common Ancestor

二叉树最低公共祖先算法
本文介绍了一种寻找二叉树中两个指定节点的最低公共祖先(LCA)的算法实现。通过递归搜索的方式找到两个节点的路径,并确定它们共同的最深祖先节点。

Lowest Common Ancestor

http://www.lintcode.com/problem/lowest-common-ancestor


Given the root and two nodes in a Binary Tree. Find the lowest common ancestor(LCA) of the two nodes.

The lowest common ancestor is the node with largest depth which is the ancestor of both nodes.

Have you met this question in a real interview?

 

Example For the following binary tree:
  4
 / \
3   7
   / \
  5   6

LCA(3, 5) = LCA(5, 6) = 7LCA(6, 7) = 7

Solution:

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */

public class Solution {
    /**
     * @param root: The root of the binary search tree.
     * @param A and B: two nodes in a Binary.
     * @return: Return the least common ancestor(LCA) of the two nodes.
     */
	
	public ArrayList<TreeNode> temp_As = new ArrayList<TreeNode>();
	public ArrayList<TreeNode> A_s = new ArrayList<TreeNode>();
	public ArrayList<TreeNode> B_s = new ArrayList<TreeNode>();

	public boolean isContained(TreeNode root, TreeNode A){
	    if(root==null){
	    	return false;
	    }
		if(root==A){
			temp_As.add(root);
			return true;
		}
		if(isContained(root.left, A)||isContained(root.right,A)){
			temp_As.add(root);
			return true;
		}
		return false;
	}	
	
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode A, TreeNode B) {
        // write your code here
    	isContained(root, A);       
        for(int i = 0; i<temp_As.size(); i++){
        	A_s.add(temp_As.get(temp_As.size()-1-i));
        }
        temp_As.clear();
        
        isContained(root, B);        
        for(int i = 0; i<temp_As.size(); i++){
        	B_s.add(temp_As.get(temp_As.size()-1-i));
        }
        temp_As.clear();
        
        int i = 0;
        for(; i < Math.min(A_s.size(), B_s.size()); i++){
            if(A_s.get(i)!= B_s.get(i)){
                break;
            }
        }
        i= i>0?i-1:0;        
        return A_s.get(i);
        
    }

}








以下是C#中二叉树的lowest common ancestor的源代码: ```csharp using System; public class Node { public int value; public Node left; public Node right; public Node(int value) { this.value = value; this.left = null; this.right = null; } } public class BinaryTree { public Node root; public BinaryTree() { this.root = null; } public Node LowestCommonAncestor(Node node, int value1, int value2) { if (node == null) { return null; } if (node.value == value1 || node.value == value2) { return node; } Node left = LowestCommonAncestor(node.left, value1, value2); Node right = LowestCommonAncestor(node.right, value1, value2); if (left != null && right != null) { return node; } return (left != null) ? left : right; } } public class Program { public static void Main() { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); Node lca = tree.LowestCommonAncestor(tree.root, 4, 5); Console.WriteLine("Lowest Common Ancestor of 4 and 5: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 4, 6); Console.WriteLine("Lowest Common Ancestor of 4 and 6: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 3, 4); Console.WriteLine("Lowest Common Ancestor of 3 and 4: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 2, 4); Console.WriteLine("Lowest Common Ancestor of 2 and 4: " + lca.value); } } ``` 在上面的代码中,我们定义了一个Node类和一个BinaryTree类。我们使用BinaryTree类来创建二叉树,并实现了一个LowestCommonAncestor方法来计算二叉树中给定两个节点的最近公共祖先。 在LowestCommonAncestor方法中,我们首先检查给定节点是否为null或与给定值之一匹配。如果是,则返回该节点。否则,我们递归地在左子树和右子树上调用LowestCommonAncestor方法,并检查它们的返回值。如果左子树和右子树的返回值都不为null,则当前节点是它们的最近公共祖先。否则,我们返回非null的那个子树的返回值。 在Main方法中,我们创建了一个二叉树,并测试了LowestCommonAncestor方法的几个不同输入。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值