
PyTorch使用及源码解读
文章平均质量分 82
该专栏介绍深度学习框架PyTorch的使用与源码解读
AI之路
机器学习,深度学习,计算机视觉算法爱好者
展开
-
PyTorch使用总览
深度学习框架训练模型时的代码主要包含数据读取、网络构建和其他设置三方面,基本上掌握这三方面就可以较为灵活地使用框架训练模型。PyTorch是Facebook的官方深度学习框架之一,到现在开源1年时间,势头非常猛,相信使用过的人都会被其轻便和快速等特点深深吸引,因此这篇博客从整体上介绍如何使用PyTorch。 PyTorch的官方github地址:https://github.com/pytorc原创 2018-01-31 21:24:22 · 8179 阅读 · 0 评论 -
PyTorch学习之路(level1)——训练一个图像分类模型
这是一个适合PyTorch入门者看的博客。PyTorch的文档质量比较高,入门较为容易,这篇博客选取官方链接里面的例子,介绍如何用PyTorch训练一个ResNet模型用于图像分类,代码逻辑非常清晰,基本上和许多深度学习框架的代码思路类似,非常适合初学者想上手PyTorch训练模型(不必每次都跑mnist的demo了)。接下来从个人使用角度加以解释。解释的思路是从数据导入开始到模型训练结束,基本上就原创 2017-11-13 21:55:35 · 56916 阅读 · 44 评论 -
PyTorch学习之路(level2)——自定义数据读取
在上一篇博客PyTorch学习之路(level1)——训练一个图像分类模型中介绍了如何用PyTorch训练一个图像分类模型,建议先看懂那篇博客后再看这篇博客。在那份代码中,采用torchvision.datasets.ImageFolder这个接口来读取图像数据,该接口默认你的训练数据是按照一个类别存放在一个文件夹下。但是有些情况下你的图像数据不是这样维护的,比如一个文件夹下面各个类别的图像数据都有原创 2017-11-25 22:33:29 · 24037 阅读 · 10 评论 -
PyTorch源码解读之torch.utils.data.DataLoader
PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口,该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor,后续只需要再包装成Variable即可作为模型的输入,因此该接口有点承上启下的原创 2018-01-14 19:28:33 · 221812 阅读 · 20 评论 -
PyTorch源码解读之torchvision.models
PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets、torchvision.models、torchvision.transforms。这3个子包的具体介绍可以参考官网:http://pytorch.org/docs/master/torchvision/index.html。具体代码可以参考github:原创 2018-01-21 13:28:35 · 102432 阅读 · 33 评论 -
PyTorch源码解读之torchvision.transforms
PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets、torchvision.models、torchvision.transforms。这3个子包的具体介绍可以参考官网:http://pytorch.org/docs/master/torchvision/index.html。具体代码可以参考github:原创 2018-01-25 23:14:51 · 47302 阅读 · 13 评论