11464 - Even Parity(偶数矩阵)

D

Even Parity

Input: Standard Input

Output: Standard Output

We have a grid of size N x N. Each cell of the grid initially contains a zero(0) or a one(1). 
The parity of a cell is the number of 1s surrounding that cell. A cell is surrounded by at most 4 cells (top, bottom, left, right).

Suppose we have a grid of size 4 x 4: 

 

1

0

1

0

The parity of each cell would be

1

3

1

2

1

1

1

1

2

3

3

1

0

1

0

0

2

1

2

1

0

0

0

0

0

1

0

0

 

 

 

 

 

 

For this problem, you have to change some of the 0s to 1s so that the parity of every cell becomes even. We are interested in the minimum number of transformations of 0 to 1 that is needed to achieve the desired requirement.

 
Input

The first line of input is an integer T (T<30) that indicates the number of test cases. Each case starts with a positive integer N(1≤N≤15). Each of the next N lines contain N integers (0/1) each. The integers are separated by a single space character.

 

Output

For each case, output the case number followed by the minimum number of transformations required. If it's impossible to achieve the desired result, then output -1 instead.

 

Sample Input                             Output for Sample Input

3
3
0 0 0
0 0 0
0 0 0
3
0 0 0
1 0 0
0 0 0
3
1 1 1
1 1 1
0 0 0
 

Case 1: 0 
Case 2: 3 
Case 3: -1


Problem Setter: Sohel Hafiz,

Special Thanks: Derek Kisman, Md. Arifuzzaman Arif

/*
n不大最大到15,第一行只有2^15=32768种可能,所以枚举第一行的情况是可以枚举的,
接下来根据第一行可以完全计算第二行,根据第二行计算第三行,这样下去时间复杂度O(2^n*n^2).
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=20;
const int INF=1000000000;
int n,mapa[N][N],flag[N][N];
int min_value(int a,int b)
{
	return a<b?a:b;
}
int check(int s)
{
	memset(flag,0,sizeof(flag));
	int i,j;
	for(i=0;i<n;i++)
	{
		if(s&(1<<i)) flag[0][i]=1;
		else if(mapa[0][i]==1) return INF;//是否只改变零能的到枚举的数。
	}
	for(i=1;i<n;i++)
	{
		for(j=0;j<n;j++)
		{
			int sum=0;
			if(i>1) sum+=flag[i-2][j];
			if(j>0) sum+=flag[i-1][j-1];
			if(j<n-1) sum+=flag[i-1][j+1];
			flag[i][j]=sum%2;
			if(mapa[i][j]==1&&flag[i][j]==0) return INF;//计算枚举各行只把0改变1,如果不合结束
		}
	}
	int cnt=0;
	for(i=0;i<n;i++)
	{
		for(j=0;j<n;j++)
		{
			if(mapa[i][j]!=flag[i][j]) cnt++;//计算0的改变量
		}
	}
	return cnt;
}
int main()
{
    int T,dk=1;
	cin>>T;
	while(T--)
	{
		cin>>n;
		int i,j;
		for(i=0;i<n;i++)
		{
			for(j=0;j<n;j++)
			{
				cin>>mapa[i][j];
			}
		}
		int ans=INF;
		for(int s=0;s<(1<<n);s++)//枚举第一行所有可能
		{
			ans=min_value(ans,check(s));
		}
		if(ans==INF) ans=-1;
		printf("Case %d: %d\n",dk++,ans);
	}
	return 0;
}



### 奇偶校验位的概念 奇偶校验是一种简单的错误检测方法,用于验证数据传输过程中是否存在单比特错误。它通过在数据包中附加一个额外的比特(称为校验位),使得整个数据包中的1的数量满足特定条件。 #### Even Parity Bit Even parity bit 的作用是使数据包中1的总数为偶数。如果原始数据中1的数量已经是偶数,则even parity bit 设置为0;如果是奇数,则设置为1以使其变为偶数[^3]。 #### Odd Parity Bit Odd parity bit 的功能则是使数据包中1的总数为奇数。如果原始数据中1的数量已经是奇数,则odd parity bit 设置为0;如果是偶数,则设置为1以使其变为奇数[^4]。 ### 差异分析 主要差异在于目标的不同: - **Even parity** 要求总数量为偶数,因此当接收到的数据不符合这一规则时,可以判断发生了错误。 - **Odd parity** 则要求总数量为奇数,同样可以通过不匹配来发现错误。 两种方式的选择通常取决于具体应用场景的需求以及系统的默认配置。值得注意的是,这两种机制都只能检测到单一比特翻转的情况,并无法纠正错误或者识别多比特同时发生改变的情形[^5]。 ```python def calculate_parity(data_bits, is_even=True): ones_count = sum(bit == '1' for bit in data_bits) if is_even: return '0' if ones_count % 2 == 0 else '1' else: return '0' if ones_count % 2 != 0 else '1' data = "1011" parity_bit_even = calculate_parity(data, True) # 计算 even parity parity_bit_odd = calculate_parity(data, False) # 计算 odd parity print(f"Data: {data}, Even Parity Bit: {parity_bit_even}, Odd Parity Bit: {parity_bit_odd}") ``` 上述代码展示了如何计算给定二进制字符串对应的even 和 odd parity bits。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

u014068781

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值