/*
** $Id: lbitlib.c,v 1.30 2015/11/11 19:08:09 roberto Exp $
** Standard library for bitwise operations
** See Copyright Notice in lua.h
*/
#define lbitlib_c
#define LUA_LIB
#include "lprefix.h"
#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"
#if defined(LUA_COMPAT_BITLIB) /* { */
#define pushunsigned(L,n) lua_pushinteger(L, (lua_Integer)(n))
#define checkunsigned(L,i) ((lua_Unsigned)luaL_checkinteger(L,i))
/* number of bits to consider in a number */
#if !defined(LUA_NBITS)
#define LUA_NBITS 32
#endif
/*
** a lua_Unsigned with its first LUA_NBITS bits equal to 1. (Shift must
** be made in two parts to avoid problems when LUA_NBITS is equal to the
** number of bits in a lua_Unsigned.)
*/
// ALLONES代表的是32位的1,其他位全是0
// ALLONES的作用就是过滤32位之外的位,只保留32位数字
#define ALLONES (~(((~(lua_Unsigned)0) << (LUA_NBITS - 1)) << 1))
// 过滤32位数字
/* macro to trim extra bits */
#define trim(x) ((x) & ALLONES)
/* builds a number with 'n' ones (1 <= n <= LUA_NBITS) */
#define mask(n) (~((ALLONES << 1) << ((n) - 1)))
// 遍历lua栈里面的参数,依次进行与操作(&)
// 这里之所以用到了r是为了截取32位之外的数字
static lua_Unsigned andaux (lua_State *L) {
int i, n = lua_gettop(L);
lua_Unsigned r = ~(lua_Unsigned)0;
for (i = 1; i <= n; i++)
r &= checkunsigned(L, i);
return trim(r);
}
// 调用andaux就可以了,编译栈里面的参数,依次执行与(&)操作
static int b_and (lua_State *L) {
lua_Unsigned r = andaux(L);
pushunsigned(L, r);
return 1;
}
// btest运算功能与band类似,不过其返回值为boolean型,用来将结果和0做对比。
static int b_test (lua_State *L) {
lua_Unsigned r = andaux(L);
lua_pushboolean(L, r != 0);
return 1;
}
// b_or操作的核心在于或(|)操作,依然是采用遍历的思想
// 再将运算出来的结果进行过滤入栈
static int b_or (lua_State *L) {
int i, n = lua_gettop(L);
lua_Unsigned r = 0;
for (i = 1; i <= n; i++)
r |= checkunsigned(L, i);
pushunsigned(L, trim(r));
return 1;
}
// 和bor操作类似,执行异或(^)操作
static int b_xor (lua_State *L) {
int i, n = lua_gettop(L);
lua_Unsigned r = 0;
for (i = 1; i <= n; i++)
r ^= checkunsigned(L, i);
pushunsigned(L, trim(r));
return 1;
}
// 用~取反就可以
static int b_not (lua_State *L) {
lua_Unsigned r = ~checkunsigned(L, 1);
pushunsigned(L, trim(r));
return 1;
}
// i为负代表右移,为正代表左移
// 关键操作是对r的移位赋值
static int b_shift (lua_State *L, lua_Unsigned r, lua_Integer i) {
if (i < 0) { /* shift right? */
i = -i;
r = trim(r);
if (i >= LUA_NBITS) r = 0;
else r >>= i;
}
else { /* shift left */
if (i >= LUA_NBITS) r = 0;
else r <<= i;
r = trim(r);
}
pushunsigned(L, r);
return 1;
}
// 左移一个数字若干位
static int b_lshift (lua_State *L) {
return b_shift(L, checkunsigned(L, 1), luaL_checkinteger(L, 2));
}
// 右移一个数字若干位
static int b_rshift (lua_State *L) {
return b_shift(L, checkunsigned(L, 1), -luaL_checkinteger(L, 2));
}
// b_arshift返回a的算术位移,移位为b
// i大于0表示右移,小于0表示左移
// 右移的时候,如果i大于等于32,则r直接为ALLONES
// 否则就分别用逻辑右移的结果和应该补充的1的位数进行或操作
// tips: 算术左移同逻辑左移
// 算术右移移入的位用符号位填
// 逻辑右移移入的位用0填
static int b_arshift (lua_State *L) {
lua_Unsigned r = checkunsigned(L, 1);
lua_Integer i = luaL_checkinteger(L, 2);
if (i < 0 || !(r & ((lua_Unsigned)1 << (LUA_NBITS - 1))))
return b_shift(L, r, -i);
else { /* arithmetic shift for 'negative' number */
if (i >= LUA_NBITS) r = ALLONES;
else
r = trim((r >> i) | ~(trim(~(lua_Unsigned)0) >> i)); /* add signal bit */
pushunsigned(L, r);
return 1;
}
}
// 这个旋转操作就是移位操作,然后把移出去的部分,在进行或运算补充进来
// 核心操作在于 r = (r << i) | (r >> (LUA_NBITS - i));
// 首先向左移i个单位,然后移出去的部分通过右移(LUA_NBITS - i)的方式保留下来,最后或运算就可以了
static int b_rot (lua_State *L, lua_Integer d) {
lua_Unsigned r = checkunsigned(L, 1);
int i = d & (LUA_NBITS - 1); /* i = d % NBITS */
r = trim(r);
if (i != 0) /* avoid undefined shift of LUA_NBITS when i == 0 */
r = (r << i) | (r >> (LUA_NBITS - i));
pushunsigned(L, trim(r));
return 1;
}
static int b_lrot (lua_State *L) {
return b_rot(L, luaL_checkinteger(L, 2));
}
static int b_rrot (lua_State *L) {
return b_rot(L, -luaL_checkinteger(L, 2));
}
/*
** get field and width arguments for field-manipulation functions,
** checking whether they are valid.
** ('luaL_error' called without 'return' to avoid later warnings about
** 'width' being used uninitialized.)
*/
// f和w分别是bit32.extract的第二个参数和第三个参数,f默认大于等于0,w一定要大于0
// 而且f和w的和不能超过32
static int fieldargs (lua_State *L, int farg, int *width) {
lua_Integer f = luaL_checkinteger(L, farg);
lua_Integer w = luaL_optinteger(L, farg + 1, 1);
luaL_argcheck(L, 0 <= f, farg, "field cannot be negative");
luaL_argcheck(L, 0 < w, farg + 1, "width must be positive");
if (f + w > LUA_NBITS)
luaL_error(L, "trying to access non-existent bits");
*width = (int)w;
return (int)f;
}
// bit32.extract(x,f,w),该运算返回的结果是从x的f位开始w位数。
// 假如执行:bit32.extract(11,1,3),运算过程是从11的二进制表示的1011第一位开始(整数部分的最右边指的是第0位),至包含自身的3位,即101组成的整数,为5.
// mask(w)的作用是构造一个低位为w个1,其余位为0的32位二进制数字,以此来保存低w位的数字
static int b_extract (lua_State *L) {
int w;
lua_Unsigned r = trim(checkunsigned(L, 1));
int f = fieldargs(L, 2, &w);
r = (r >> f) & mask(w);
pushunsigned(L, r);
return 1;
}
// b_replace的意思是对一个数的某些位执行替换操作
// 该运算有4个参数:第一个参数指的是我们要执行运算的数;第二个参数指的是要替换进去的数;后两个参数与extract的后两个参数意思一致:从f位开始共w位,即f至f+w-1位。
// print(bit32.replace(11,6,1,3)) --13
// (r & ~(m << f)) 这部分算出的是r除了指定位的数字,此时指定为变为0
// ((v & m) << f) 这部分算出的是替换后的r指定位替换后的数字
// 然后或运算就可以了,不详细写了,没什么写的,分析一下就出来了
static int b_replace (lua_State *L) {
int w;
lua_Unsigned r = trim(checkunsigned(L, 1));
lua_Unsigned v = trim(checkunsigned(L, 2));
int f = fieldargs(L, 3, &w);
lua_Unsigned m = mask(w);
r = (r & ~(m << f)) | ((v & m) << f);
pushunsigned(L, r);
return 1;
}
static const luaL_Reg bitlib[] = {
{"arshift", b_arshift},
{"band", b_and},
{"bnot", b_not},
{"bor", b_or},
{"bxor", b_xor},
{"btest", b_test},
{"extract", b_extract},
{"lrotate", b_lrot},
{"lshift", b_lshift},
{"replace", b_replace},
{"rrotate", b_rrot},
{"rshift", b_rshift},
{NULL, NULL}
};
LUAMOD_API int luaopen_bit32 (lua_State *L) {
luaL_newlib(L, bitlib);
return 1;
}
#else /* }{ */
LUAMOD_API int luaopen_bit32 (lua_State *L) {
return luaL_error(L, "library 'bit32' has been deprecated");
}
#endif /* } */
lbitlib.c(5.3.4)解析
最新推荐文章于 2025-02-24 21:27:40 发布