工业缺陷检测实战——道路裂缝分割

第一步:准备数据

道路裂缝分割,总共118张

第二步:搭建模型

Attention Unet主要的中心思想就是提出来Attention gate模块,使用soft-attention替代hard-attention,将attention集成到Unet的跳跃连接和上采样模块中,实现空间上的注意力机制。通过attention机制来抑制图像中的无关信息,突出局部的重要特征

c696c4c78b504bab950f0cb3d39345b7.png

 Attention Unet的模型结构和Unet十分相像,只是增加了Attention Gate模块来对skip connection和upsampling层做attention机制。

403c0261a5264da1b926d5882ebce1a4.png

在Attention Gate模块中,g和xl分别为skip connection的输出和下一层的输出,如图

1b1f25a4f35b4feca1a62f8311ac5d01.png

需要注意的是,在计算Wg和Wx后,对两者进行相加。但是,此时g的维度和xl的维度并不相等,则需要对g做下采样或对xl做上采样。(我倾向于对xl做上采样,因为在原本的Unet中,在Decoder就需要对下一层做上采样,所以,直接使用这个上采样结果可以减少网络计算)。

Wg和Wx经过相加,ReLU激活,1x1x1卷积,Sigmoid激活,生成一个权重信息,将这个权重与原始输入xl相乘,得到了对xl的attention激活。这就是Attenton Gate的思想。

Attenton Gate还有一个比较重要的特点是:这个权重可以经由网络学习!因为soft-attention是可微的,可以微分的attention就可以通过神经网络算出梯度并且前向传播和后向反馈来学习得到attention的权重。以此来学习更重要的特征。

第三步:代码

1)损失函数为:交叉熵损失函数+dice损失

2)网络代码:

class AttU_Net(nn.Module):
    def __init__(self,img_ch=3,output_ch=1):
        super(AttU_Net,self).__init__()
        
        self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2)

        self.Conv1 = conv_block(ch_in=img_ch,ch_out=64)
        self.Conv2 = conv_block(ch_in=64,ch_out=128)
        self.Conv3 = conv_block(ch_in=128,ch_out=256)
        self.Conv4 = conv_block(ch_in=256,ch_out=512)
        self.Conv5 = conv_block(ch_in=512,ch_out=1024)

        self.Up5 = up_conv(ch_in=1024,ch_out=512)
        self.Att5 = Attention_block(F_g=512,F_l=512,F_int=256)
        self.Up_conv5 = conv_block(ch_in=1024, ch_out=512)

        self.Up4 = up_conv(ch_in=512,ch_out=256)
        self.Att4 = Attention_block(F_g=256,F_l=256,F_int=128)
        self.Up_conv4 = conv_block(ch_in=512, ch_out=256)
        
        self.Up3 = up_conv(ch_in=256,ch_out=128)
        self.Att3 = Attention_block(F_g=128,F_l=128,F_int=64)
        self.Up_conv3 = conv_block(ch_in=256, ch_out=128)
        
        self.Up2 = up_conv(ch_in=128,ch_out=64)
        self.Att2 = Attention_block(F_g=64,F_l=64,F_int=32)
        self.Up_conv2 = conv_block(ch_in=128, ch_out=64)

        self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0)


    def forward(self,x):
        # encoding path
        x1 = self.Conv1(x)

        x2 = self.Maxpool(x1)
        x2 = self.Conv2(x2)
        
        x3 = self.Maxpool(x2)
        x3 = self.Conv3(x3)

        x4 = self.Maxpool(x3)
        x4 = self.Conv4(x4)

        x5 = self.Maxpool(x4)
        x5 = self.Conv5(x5)

        # decoding + concat path
        d5 = self.Up5(x5)
        x4 = self.Att5(g=d5,x=x4)
        d5 = torch.cat((x4,d5),dim=1)        
        d5 = self.Up_conv5(d5)
        
        d4 = self.Up4(d5)
        x3 = self.Att4(g=d4,x=x3)
        d4 = torch.cat((x3,d4),dim=1)
        d4 = self.Up_conv4(d4)

        d3 = self.Up3(d4)
        x2 = self.Att3(g=d3,x=x2)
        d3 = torch.cat((x2,d3),dim=1)
        d3 = self.Up_conv3(d3)

        d2 = self.Up2(d3)
        x1 = self.Att2(g=d2,x=x1)
        d2 = torch.cat((x1,d2),dim=1)
        d2 = self.Up_conv2(d2)

        d1 = self.Conv_1x1(d2)

        return d1

第四步:统计一些指标(训练过程中的loss和miou)

第五步:搭建GUI界面

第五步:整个工程的内容

项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷

工业缺陷检测实战——道路裂缝分割_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI街潜水的八角

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值