【POJ1837】【最短路裸题】【建模】

本文介绍了一个基于最短路径算法的应用案例——tram路线优化。该案例旨在寻找从起点到终点需要手动切换轨道次数最少的路线。通过使用Dijkstra算法进行计算,可以有效地找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tram
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 12064 Accepted: 4399

Description

Tram network in Zagreb consists of a number of intersections and rails connecting some of them. In every intersection there is a switch pointing to the one of the rails going out of the intersection. When the tram enters the intersection it can leave only in the direction the switch is pointing. If the driver wants to go some other way, he/she has to manually change the switch. 

When a driver has do drive from intersection A to the intersection B he/she tries to choose the route that will minimize the number of times he/she will have to change the switches manually. 

Write a program that will calculate the minimal number of switch changes necessary to travel from intersection A to intersection B. 

Input

The first line of the input contains integers N, A and B, separated by a single blank character, 2 <= N <= 100, 1 <= A, B <= N, N is the number of intersections in the network, and intersections are numbered from 1 to N. 

Each of the following N lines contain a sequence of integers separated by a single blank character. First number in the i-th line, Ki (0 <= Ki <= N-1), represents the number of rails going out of the i-th intersection. Next Ki numbers represents the intersections directly connected to the i-th intersection.Switch in the i-th intersection is initially pointing in the direction of the first intersection listed. 

Output

The first and only line of the output should contain the target minimal number. If there is no route from A to B the line should contain the integer "-1".

Sample Input

3 2 1
2 2 3
2 3 1
2 1 2

Sample Output

0

Source




#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <string>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
using namespace std;
    
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define mp push_back

int n,a,b;
const int maxn = 110;
int x[maxn];
int g[maxn][maxn];
bool ok[maxn];
int d[maxn];


int dij(int st,int e)
{
	for(int i=1;i<=n;i++)
	{
		d[i] = 0x3f3f3f3f;
		ok[i] =false;
	}

	d[st] = 0;
	for(int i=0;i<n-1;i++)
	{
		int mins = 0x3f3f3f3f;
		int p = -1;
		for(int j=1;j<=n;j++)
		{
			if(!ok[j] && d[j] < mins) 
			{
				mins = d[j];
				p = j;
			}
		}

		if(p == -1) break;
		ok[p] = true;

		for(int j=1;j<=n;j++)
		{
			if(!ok[j] && d[j] > d[p] + g[p][j])
			{
				d[j] = d[p] + g[p][j];
			}
		}
	}
	return d[e];
}

int main()
{
    while(scanf("%d%d%d",&n,&a,&b) != EOF)
	{
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				if(i == j) g[i][j] = 0;
				g[i][j] = 0x3f3f3f3f;
			}
		}
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&x[i]);
			for(int k=1;k<=x[i];k++)
			{
				int v;
				scanf("%d",&v);
				if(k == 1)
				{
					g[i][v] = 0;
					continue;
				}
				g[i][v] = min(g[i][v],1);
			}
		}
		int ans = dij(a,b);
		if(ans == 0x3f3f3f3f)  ans = -1;
		printf("%d\n",ans);
	}
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值