1. 交错定理
交错定理是切比雪夫逼近理论的核心内容,描述在区间[a,b]上,一个函数 f ( x ) f(x) f(x)的最佳一致逼近多项式 P n ( x ) P_n(x) Pn(x)的特性。定理内容如下:
设 f ( x ) f(x) f(x)是区间[a,b]上的连续函数, P n ( x ) P_n(x) Pn(x)是 f ( x ) f(x) f(x)的最佳一致逼近多项式(次数不超过 n n n)。那么,误差函数 E ( x ) = f ( x ) − P n ( x ) E(x)=f(x)-P_n(x) E(x)=f(x)−Pn(x)在区间[a,b]上满足:
(1)交错性:误差函数 E ( x ) E(x) E(x)在区间[a,b]上至少有 n + 2 n+2 n+2个交错点,即存在 n + 2 n+2 n+2个点 x