题目
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路
这个一个动态规划的问题,不太好做,自己考虑的半天也没能做出来,后来看了一下别人的做法。
比较经典的思路:从下往上,每一行的结果根据下面一行的路基累计和而计算。
实现代码如下:
public int minimumTotal(List<List<Integer>> triangle) {
int size=triangle.size();
int res[]=new int[size+1];
for(int i=size-1;i>=0;i--){//利用DP从下往上进行
List<Integer> temp=triangle.get(i);
for(int j=0;j<temp.size();j++){
//当决定第i层中第j个元素是最小和路径中时,则只能在min(res[j],res[j+1])+temp.get(j)
res[j]=Math.min(res[j], res[j+1])+temp.get(j);
}
}
return res[0];
}