
程序员-数学复习
文章平均质量分 56
继续微笑lsj
眼界决定未来
展开
-
简单复习下高数
1.多元函数的极值问题 极值不是最值,是一个局部的概念。那么如何判断一个多元函数是否有极值呢。下面只是必要条件,即是极值一定要满足下列条件,满足下列条件不一定是极值。推广:【注】驻点不一定是极值,极值一定是驻点。【注】研究极值除了研究驻点外,还应该研究驻点不存在的点。充分条件:2. 条件极值(拉格朗日) 无条件极值:除原创 2013-10-06 22:13:58 · 2022 阅读 · 3 评论 -
工程矩阵-SVD分解
1.特征值与特征向量特征值满足的性质:【注】主对角上元素的和称为矩阵的迹,即a11+a22..ann。2.特征向量的性质 定理1:互不相等的特征值所对应的特征向量线性无关。【注】在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性原创 2013-10-06 23:41:35 · 2142 阅读 · 0 评论 -
PCA的数学原理
原文:http://blog.codinglabs.org/articles/pca-tutorial.htmlPCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,转载 2013-10-07 13:16:25 · 1384 阅读 · 0 评论 -
线性判别分析(LDA), 主成分分析(PCA)
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义、学习方法等等。一宁上次给转载 2013-10-06 19:41:30 · 1461 阅读 · 0 评论 -
隐马尔科夫模型
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值。平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍。 考虑下面交通灯的转载 2013-10-24 13:50:56 · 2371 阅读 · 4 评论 -
泰勒级数定义及相关展开式
泰勒级数、欧拉公式、三角函数泰勒级数的定义:若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为:其中:,称为拉格朗日余项。以上函数展开式称为泰勒级数。泰勒级数在幂级数展开中的作用:在泰勒公式中,取,得:这个级数称为麦克劳林级数。函数f(x)的麦克劳林级数是x的幂级数,那么这种展开是唯一的,转载 2013-10-26 21:56:13 · 4138 阅读 · 0 评论 -
马尔可夫链
1.什么是随机过程?在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。人类历史上第一个从理论上提出并加以研究的过程模型是马尔科夫链,它是马尔科夫对概率论乃至人类思想发展作出的又一伟大转载 2013-10-24 00:44:20 · 6369 阅读 · 0 评论