156 - ZOJ Monthly, January 2019 - A Little Sub and Pascal's Triangle找规律

本文探讨了如何高效计算杨辉三角特定行中奇数元素的数量,通过观察和数学推导,提出了一种新颖的算法,该算法能快速解决大规模行号的问题。

Little Sub is about to take a math exam at school. As he is very confident, he believes there is no need for a review.

Little Sub’s father, Mr.Potato, is nervous about Little Sub’s attitude, so he gives Little Sub a task to do. To his surprise, Little Sub finishes the task quickly and perfectly and even solves the most difficult problem in the task.

Mr.Potato trys to find any possible mistake on the task paper and suddenly notices an interesting problem. It’s a problem related to Pascal’s Triangle.
在这里插入图片描述
“math”/
The definition of Pascal’s Triangle is given below:

The first element and the last element of each row in Pascal’s Triangle is , and the -th element of the -th row equals to the sum of the -th and the -th element of the -th row.

According to the definition, it’s not hard to deduce the first few lines of the Pascal’s Triangle, which is:

在这里插入图片描述
In the task, Little Sub is required to calculate the number of odd elements in the 126th row of Pascal’s Triangle.

Mr.Potato now comes up with a harder version of this problem. He gives you many queries on this problem, but the row number may be extremely large. For each query, please help Little Sub calculate the number of odd elements in the -th row of Pascal’s Triangle.

Input
There are multiple test cases. The first line of the input contains an integer (), indicating the number of test cases. For each test case:

The first and only line contains an integer (), indicating the required row number in Pascal’s Triangle.

Output
For each test case, output the number of odd numbers in the -th line.

Sample Input
3
3
4
5
Sample Output
2
4
2

题意:

统计杨辉三角中第i排中奇数的个数。

题解:

打个表就会发现,如果这个数大于(第一个大于等于它的2的幂次的数+第一个小于它的2的幂次的数)/2,那么就是对应(第一个小于它的2的幂次的数-(第一个大于等于它的2的幂次的数-这个数)*2否则就与对应的数相等。举个例子:5<(8+4)/2,5=(4/2+(5-4)) = 2。6>=(8+4)/2 , 6 = (4-(8-6))*2 = 2*2 = 4

#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll dfs(ll x,ll ret)
{
    while(ret>=x*2)
        ret/=2;
    if(x==1)
        return 1;
    if(x==2)
        return 2;
    if(ret-x<=ret/2/2)
        return dfs(ret/2-(ret-x),ret/2)*2;
    else return dfs(ret/2/2+(x-ret/2),ret/2);
}
int main()
{
    ll a[3];
    a[1]=1,a[2]=2;
    int t;
    scanf("%d",&t);
    while(t--)
    {
        ll k;
        scanf("%lld",&k);
        ll ret=1;
        while(ret<k)
            ret*=2;
        printf("%lld\n",dfs(k,ret));
    }
    return 0;
}
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值