LangGraph AI 系统测试与高可用保障体系
LangGraph 应用的测试和高可用保障需要系统化方法,以下从测试策略到生产保障的完整方案:
一、LangGraph 测试金字塔模型
1. 节点单元测试
# 测试工具节点
def test_tool_node():
state = {
"input": "查询北京天气"}
result = tool_node(state)
assert "temperature" in result
assert isinstance(result["temperature"], float)
# 测试LLM节点
from unittest.mock import MagicMock
def test_llm_node(monkeypatch):
mock_llm = MagicMock()
mock_llm.invoke.return_value = "晴天,25℃"
monkeypatch.setattr("app.llm", mock_llm)
state = {
"messages": [HumanMessage("北京天气")]}
result = llm_node(state)
assert "晴天" in result["response"]
2. 工作流集成测试
def test_weather_workflow():
# 模拟完整工作流
app = build_weather_graph()
inputs = {
"location": "北京", "unit": "celsius"}
result = app.invoke(inputs)
# 验证输出结构
assert "weather" in result
assert "temperature" in result["weather"]
assert "unit" in result["weather"]
# 验证执行路径
tracer = get_trace_log(result)
assert "location_validation" in tracer
assert "weather_api_call" in tracer
二、端到端测试策略
1. 真实场景测试框架
# conftest.py
@pytest.fixture
def production_graph():
return compile_production_graph()
# test_e2e.py
@pytest.mark.parametrize("input,expected", [
({
"query": "北京天气"}, {
"contains": ["温度"]}),
({
"query": "股票AAPL"}, {
"contains": ["Apple"]}),
({
"query": "无效指令"}, {
"error_type": "InvalidInput"})
])
def test_full_workflow(production_graph, input, expected):
result = production_graph.invoke(input)
if "contains" in expected:

最低0.47元/天 解锁文章
415

被折叠的 条评论
为什么被折叠?



