36、构建高效服务器计算环境:性能优化与自动化创建

构建高效服务器计算环境:性能优化与自动化创建

1. 终端服务器性能优化

终端服务器的性能优化正从一门神秘的艺术迅速转变为一门经过验证的科学。如今,有许多有用的资源和工具可用于性能优化,追求更高效地利用硬件和为最终用户提供更好的性能,无疑是一项有价值的工作。

1.1 网络资源

一个值得注意的网络资源是 http://www.tweakcitrix.com ,它能为性能优化提供一定的帮助。

1.2 附加工具

除了上述网站资源外,还有各种用于 Citrix 的附加工具,可提供性能增强和应用程序控制。以下是四个推荐的产品:
| 产品名称 | 功能描述 | 下载地址 |
| ---- | ---- | ---- |
| RES PowerFuse | 减少因行为异常的应用程序导致的服务器暂停,通过拦截使用资源超过允许阈值(如 90%)的应用程序,将其降至较低优先级。还提供用户和应用程序锁定、软件计量、打印机控制等功能。 | http://www.powerfuse.com |
| AppSense | 为基于服务器的计算创建了一套全面的工具,涵盖从桌面锁定和 GUI 策略配置到性能进程管理(IPM)技术,可动态管理分配给每个用户的处理器和内存利用率。 | http://www.ap

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值