CareerCup Compute the rearrangement of x that is closest to y but still greater than y

From the set of natural integer numbers 
Let x = 1234 = {1, 2, 3, 4} 
Let y = 2410 = {2, 4, 1, 0} 

Write an algorithm to compute the rearrangement of x that is closest to y but still greater than y. Both x and y have the same number of digits. 

So in the example above, the answer would be { 2, 4, 1, 3 } = 2413 which is greater than y = 2410 and closer than any other arrangements of x. 

And whats the time complexity of this algorithm?

--------------------------------------------------


backtracing. 
1. sort x first. 
2. iterate through x, find a unused digit that is greater than or equal to the target digit in y. 
2.a if we can find a digit that is strictly greater than that in y, we find a solution, add all unused digits in x into the result in ascending order 
2.b if we can only find a digit in x that is equal to the target digit in y, we continue this execution path.




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值